General Modular Quantum Dilogarithm and Beta Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 269-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a univariate beta integral composed of general modular quantum dilogarithm functions and prove its exact evaluation formula. It represents the partition function of a particular 3d supersymmetric field theory on the general squashed lens space. Its possible applications to 2d conformal field theory are briefly discussed as well.
@article{TM_2020_309_a18,
     author = {Gor A. Sarkissian and Vyacheslav P. Spiridonov},
     title = {General {Modular} {Quantum} {Dilogarithm} and {Beta} {Integrals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {269--289},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a18/}
}
TY  - JOUR
AU  - Gor A. Sarkissian
AU  - Vyacheslav P. Spiridonov
TI  - General Modular Quantum Dilogarithm and Beta Integrals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 269
EP  - 289
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a18/
LA  - ru
ID  - TM_2020_309_a18
ER  - 
%0 Journal Article
%A Gor A. Sarkissian
%A Vyacheslav P. Spiridonov
%T General Modular Quantum Dilogarithm and Beta Integrals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 269-289
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a18/
%G ru
%F TM_2020_309_a18
Gor A. Sarkissian; Vyacheslav P. Spiridonov. General Modular Quantum Dilogarithm and Beta Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 269-289. http://geodesic.mathdoc.fr/item/TM_2020_309_a18/

[1] Alexandrov S., Pioline B., “Theta series, wall-crossing and quantum dilogarithm identities”, Lett. Math. Phys., 106:8 (2016), 1037–1066 | MR | Zbl

[2] Andersen J.E., Kashaev R., Complex quantum Chern–Simons, E-print, 2014, arXiv: 1409.1208

[3] Andrews G.E., Askey R., Roy R., Special functions, Encycl. Math. Appl., 71, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] Bazhanov V.V., Mangazeev V.V., Sergeev S.M., “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nucl. Phys. B, 784:3 (2007), 234–258 | MR | Zbl

[5] Bazhanov V.V., Mangazeev V.V., Sergeev S.M., “Exact solution of the Faddeev–Volkov model”, Phys. Lett. A, 372:10 (2008), 1547–1550 | MR | Zbl

[6] Bershtein M.A., Fateev V.A., Litvinov A.V., “Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory”, Nucl. Phys. B, 847 (2011), 413–459 | MR | Zbl

[7] Bogolyubov N.N., Shirkov D.V., Vvedenie v teoriyu kvantovannykh polei, 4-e izd., Nauka, M., 1984 ; N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., Nauka, Moscow, 1976 ; J. Wiley Sons, New York, 1980; 4th ed., Nauka, Moscow, 1984 | MR | MR

[8] Bonelli G., Maruyoshi K., Tanzini A., Yagi F., “$\mathcal N=2$ gauge theories on toric singularities, blow-up formulae and $W$-algebrae”, J. High Energy Phys., 2013:01 (2013), 014 | MR | Zbl

[9] Van de Bult F.J., Rains E.M., Stokman J.V., “Properties of generalized univariate hypergeometric functions”, Commun. Math. Phys., 275:1 (2007), 37–95 | MR | Zbl

[10] Bytsko A.G., Teschner J., “Quantization of models with non-compact quantum group symmetry: Modular XXZ magnet and lattice sinh-Gordon model”, J. Phys. A: Math. Gen., 39:41 (2006), 12927–12981 | MR | Zbl

[11] Chicherin D., Derkachov S., “The R-operator for a modular double”, J. Phys. A: Math. Theor., 47:11 (2014), 115203 | MR | Zbl

[12] Chicherin D., Spiridonov V.P., “The hyperbolic modular double and the Yang–Baxter equation”, Representation theory, special functions and Painvlevé equations – RIMS 2015, Adv. Stud. Pure Math., 76, Math. Soc. Japan, Tokyo, 2018, 95–123 | MR | Zbl

[13] Dimofte T., “Complex Chern–Simons theory at level $k$ via the 3d–3d correspondence”, Commun. Math. Phys., 339:2 (2015), 619–662 | MR | Zbl

[14] Dimofte T., Gaiotto D., Gukov S., “Gauge theories labelled by three-manifolds”, Commun. Math. Phys., 325:2 (2014), 367–419 | MR | Zbl

[15] Dolan F.A., Osborn H., “Applications of the superconformal index for protected operators and $q$-hypergeometric identities to $\mathcal N=1$ dual theories”, Nucl. Phys. B, 818:3 (2009), 137–178 | MR | Zbl

[16] Dolan F.A.H., Spiridonov V.P., Vartanov G.S., “From $4d$ superconformal indices to $3d$ partition functions”, Phys. Lett. B, 704:3 (2011), 234–241 | MR

[17] Eichler M., Zagier D., The theory of Jacobi forms, Prog. Math., 55, Birkhäuser, Boston, 1985 | MR | Zbl

[18] Faddeev L., “Currentlike variables in massive and massless integrable models”, Quantum groups and their applications in physics, Proc. Int. Sch. Phys. “Enrico Fermi”, 127, IOS Press, Amsterdam, 1996, 117–135 | MR | Zbl

[19] Faddeev L.D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254 | MR | Zbl

[20] Fateev V., Zamolodchikov A., Zamolodchikov Al., Boundary Liouville field theory. I: Boundary state and boundary two-point function, E-print, 2000, arXiv: hep-th/0001012 | MR

[21] Gahramanov I., Kels A.P., “The star–triangle relation, lens partition function, and hypergeometric sum/integrals”, J. High Energy Phys., 2017:02 (2017), 040 | MR

[22] Griguolo L., Seminara D., Szabo R.J., Tanzini A., “Black holes, instanton counting on toric singularities and $q$-deformed two-dimensional Yang–Mills theory”, Nucl. Phys. B, 772:1–2 (2007), 1–24 | MR | Zbl

[23] Hama N., Hosomichi K., Lee S., “SUSY gauge theories on squashed three-spheres”, J. High Energy Phys., 2011:05 (2011), 014 | MR | Zbl

[24] Hansen S.K., Takata T., “Reshetikhin–Turaev invariants of Seifert 3-manifolds for classical simple Lie algebras”, J. Knot Theory Ramifications, 13:5 (2004), 617–668 | MR | Zbl

[25] Imamura Y., Matsuno H., Yokoyama D., “Factorization of the $S^3/\mathbb Z_n$ partition function”, Phys. Rev. D, 89:8 (2014), 085003

[26] Imamura Y., Yokoyama D., “$S^3/\mathbb Z_n$ partition function and dualities”, J. High Energy Phys., 2012:11 (2012), 122 | MR | Zbl

[27] Kapustin A., Willett B., Yaakov I., “Exact results for Wilson loops in superconformal Chern–Simons theories with matter”, J. High Energy Phys., 2010:03 (2010), 089 | MR | Zbl

[28] Kashaev R., “The quantum dilogarithm and Dehn twists in quantum Teichmüller theory”, Integrable structures of exactly solvable two-dimensional models of quantum field theory, NATO Sci. Ser. II: Math. Phys. Chem., 35, ed. by S. Pakuliak, G. von Gehlen, Kluwer, Dordrecht, 2001, 211–221 | MR | Zbl

[29] R. M. Kashaev, “Beta pentagon relations”, Theor. Math. Phys., 181:1 (2014), 1194–1205 | MR | Zbl

[30] Kashaev R., “The Yang–Baxter relation and gauge invariance”, J. Phys. A: Math. Theor., 49:16 (2016), 164001 | MR | Zbl

[31] Kashaev R., Luo F., Vartanov G., “A TQFT of Turaev–Viro type on shaped triangulations”, Ann. Henri Poincaré, 17:5 (2016), 1109–1143 | MR | Zbl

[32] Kharchev S., Lebedev D., Semenov-Tian-Shansky M., “Unitary representations of $U_q(\mathfrak {sl}(2,\mathbb R))$, the modular double and the multiparticle $q$-deformed Toda chains”, Commun. Math. Phys., 225:3 (2002), 573–609 | MR | Zbl

[33] Nieri F., Pasquetti S., “Factorisation and holomorphic blocks in 4d”, J. High Energy Phys., 2015:11 (2015), 155 | MR | Zbl

[34] NIST digital library of mathematical functions http://dlmf.nist.gov/

[35] Pestun V. et al., “Localization techniques in quantum field theories”, J. Phys. A: Math. Theor., 50:44 (2017), 440301 | MR | Zbl

[36] Rademacher H., Topics in analytic number theory, Springer, Berlin, 1973 | MR | Zbl

[37] Rademacher H., Grosswald E., Dedekind sums, Math. Assoc. Amer., Washington, D.C., 1972 | MR | Zbl

[38] Ruijsenaars S.N.M., “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Commun. Math. Phys., 206:3 (1999), 639–690 | MR | Zbl

[39] Sarkissian G., Spiridonov V.P., “From rarefied elliptic beta integral to parafermionic star–triangle relation”, J. High Energy Phys., 2018:10 (2018), 097 | MR

[40] G. A. Sarkissian and V. P. Spiridonov, “Modular group and hyperbolic beta integral”, Russ. Math. Surv., 75:3 (2020) | MR

[41] A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields, Nauka, Moscow, 1978 | MR | MR | Zbl

[42] L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Front. Phys., 83, Addison-Wesley, Redwood City, CA, 1991 | MR | MR | Zbl

[43] V. P. Spiridonov, “On the elliptic beta function”, Russ. Math. Surv., 56:1 (2001), 185–186 | MR | Zbl

[44] Spiridonov V.P., “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283 | MR | Zbl

[45] V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions”, Russ. Math. Surv., 63:3 (2008), 405–472 | MR | Zbl

[46] Spiridonov V.P., “Elliptic beta integrals and solvable models of statistical mechanics”, Algebraic aspects of Darboux transformations, quantum integrable systems and supersymmetric quantum mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 181–211 | MR | Zbl

[47] Spiridonov V.P., “Rarefied elliptic hypergeometric functions”, Adv. Math., 331 (2018), 830–873 | MR | Zbl

[48] Spiridonov V.P., Vartanov G.S., “Elliptic hypergeometry of supersymmetric dualities”, Commun. Math. Phys., 304:3 (2011), 797–874 ; arXiv: 0910.5944 | MR | Zbl

[49] Stokman J.V., “Hyperbolic beta integrals”, Adv. Math., 190:1 (2004), 119–160 | MR

[50] A. Yu. Volkov and L. D. Faddeev, “Yang-baxterization of the quantum dilogarithm”, J. Math. Sci., 88:2 (1998), 202–207 | MR

[51] Wikipedia contributors., Lens space, Wikipedia. The Free Encyclopedia, 2019 https://en.wikipedia.org/w/index.php?title=Lens\textunderscore space&oldid=922730842