Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a16, author = {V. V. Prokofev and A. V. Zabrodin}, title = {Matrix {Kadomtsev--Petviashvili} {Hierarchy} and {Spin} {Generalization} of {Trigonometric} {Calogero--Moser} {Hierarchy}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {241--256}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a16/} }
TY - JOUR AU - V. V. Prokofev AU - A. V. Zabrodin TI - Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 241 EP - 256 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a16/ LA - ru ID - TM_2020_309_a16 ER -
%0 Journal Article %A V. V. Prokofev %A A. V. Zabrodin %T Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 241-256 %V 309 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_309_a16/ %G ru %F TM_2020_309_a16
V. V. Prokofev; A. V. Zabrodin. Matrix Kadomtsev--Petviashvili Hierarchy and Spin Generalization of Trigonometric Calogero--Moser Hierarchy. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 241-256. http://geodesic.mathdoc.fr/item/TM_2020_309_a16/
[1] Airault H., McKean H.P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | MR | Zbl
[2] Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12:3 (1971), 419–436 | MR
[3] Calogero F., “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 | MR
[4] Choodnovsky D.V., Choodnovsky G.V., “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1977), 339–350 | MR
[5] Date E., Jimbo M., Kashiwara M., Miwa T., “Operator approach to the Kadomtsev–Petviashvili equation—Transformation groups for soliton equations. III”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | MR | Zbl
[6] Date E., Jinbo M., Miwa T., “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | MR
[7] Date E., Jinbo M., Miwa T., “Method for generating discrete soliton equations. II”, J. Phys. Soc. Japan, 51:12 (1982), 4125–4131 | MR
[8] Gibbons J., Hermsen T., “A generalisation of the Calogero–Moser system”, Physica D, 11:3 (1984), 337–348 | MR | Zbl
[9] Haine L., “KP trigonometric solitons and an adelic flag manifold”, SIGMA. Symmetry Integrability Geom. Methods Appl., 3 (2007), 015 | MR | Zbl
[10] Kac V., van de Leur J., “The $n$-component KP hierarchy and representation theory”, Important developments in soliton theory, ed. by A.S. Fokas, V.E. Zakharov, Springer, Berlin, 1993, 302–343 | MR | Zbl
[11] I. M. Krichever, “Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of $N$ particles on a line”, Funct. Anal. Appl., 12:1 (1978), 59–61 | MR | Zbl | Zbl
[12] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | MR | Zbl
[13] Krichever I., Babelon O., Billey E., Talon M., “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Topics in topology and mathematical physics, AMS Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 83–119 | MR | Zbl
[14] Krichever I., Wiegmann P., Zabrodin A., “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396 | MR | Zbl
[15] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16 (1975), 197–220 | MR | Zbl
[16] Nijhoff F.W., Pang G.-D., “A time-discretized version of the Calogero–Moser model”, Phys. Lett. A, 191:1–2 (1994), 101–107 | MR | Zbl
[17] Nijhoff F.W., Ragnisco O., Kuznetsov V.B., “Integrable time-discretization of the Ruijsenaars–Schneider model”, Commun. Math. Phys., 176:3 (1996), 681–700 | MR | Zbl
[18] Olshanetsky M.A., Perelomov A.M., “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | MR
[19] Pashkov V., Zabrodin A., “Spin generalization of the Calogero–Moser hierarchy and the matrix KP hierarchy”, J. Phys. A: Math. Theor., 51:21 (2018), 215201 | MR | Zbl
[20] Ragnisco O., Suris Yu.B., “Integrable discretizations of the spin Ruijsenaars-Schneider models”, J. Math. Phys., 38:9 (1997), 4680–4691 | MR | Zbl
[21] Shiota T., “Calogero–Moser hierarchy and KP hierarchy”, J. Math. Phys., 35:11 (1994), 5844–5849 | MR | Zbl
[22] Suris Yu.B., The problem of integrable discretization: Hamiltonian approach, Prog. Math., 219, Birkhäuser, Basel, 2003 | MR | Zbl
[23] Takasaki K., Takebe T., “Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy”, Physica D, 235:1–2 (2007), 109–125 | MR | Zbl
[24] Teo L.-P., “The multicomponent KP hierarchy: Differential Fay identities and Lax equations”, J. Phys. A: Math. Theor., 44:22 (2011), 225201 | MR | Zbl
[25] Zabrodin A., “Time discretization of the spin Calogero–Moser model and the semi-discrete matrix KP hierarchy”, J. Math. Phys., 60:3 (2019), 033502 | MR | Zbl
[26] Zabrodin A., “KP hierarchy and trigonometric Calogero–Moser hierarchy”, J. Math. Phys., 61:4 (2020), 043502 ; arXiv: 1906.09846 | MR | Zbl