Nonrelativistic Limit of the Bosonic String
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 198-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

An action for the nonrelativistic string is proposed that is invariant under general coordinate transformations on the string worldsheet. Hamiltonian formalism for the nonrelativistic string is given. Particular solutions of the Euler–Lagrange equations are found in the time gauge.
@article{TM_2020_309_a12,
     author = {M. O. Katanaev},
     title = {Nonrelativistic {Limit} of the {Bosonic} {String}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {198--209},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a12/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Nonrelativistic Limit of the Bosonic String
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 198
EP  - 209
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a12/
LA  - ru
ID  - TM_2020_309_a12
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Nonrelativistic Limit of the Bosonic String
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 198-209
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a12/
%G ru
%F TM_2020_309_a12
M. O. Katanaev. Nonrelativistic Limit of the Bosonic String. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 198-209. http://geodesic.mathdoc.fr/item/TM_2020_309_a12/

[1] B. M. Barbashov and N. A. Chernikov, “Solution and quantization of a nonlinear two-dimensional model for a Born–Infeld type field”, Sov. Phys. JETP, 23:5 (1966), 861–868

[2] B. M. Barbashov and N. A. Chernikov, “Solution of the two plane wave scattering problem in a nonlinear scalar field theory of the Born–Infeld type”, Sov. Phys. JETP, 24:2 (1967), 437–442

[3] B. M. Barbashov and V. V. Nesterenko, Relativistic String Model in Hadron Physics, Energoatomizdat, Moscow, 1987 | MR

[4] Introduction to the Relativistic String Theory, World Scientific, Singapore, 1990 | MR

[5] Bergshoeff E.A., Gomis J., Rosseel J., Şimşek C., Yan Z., “String theory and string Newton–Cartan geometry”, J. Phys. A: Math. Theor., 53:1 (2019), 014001 ; arXiv: ; Brink L., Enno M., Printsipy teorii strun, Mir, M., 1991 1907.10668 | MR

[6] L. Brink and M. Henneaux, Principles of String Theory, Plenum, New York, 1988 | MR

[7] Gomis J., Ooguri H., “Nonrelativistic closed string theory”, J. Math. Phys., 42:7 (2001), 3127–3151 ; arXiv: hep-th/0009181 | MR | Zbl

[8] Gotō T., “Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model”, Prog. Theor. Phys., 46:5 (1971), 1560–1569 ; Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, v. 1, 2, Mir, M., 1990 | MR | Zbl | MR

[9] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, v. 1, 2, Cambridge Univ. Press, Cambridge, 1987 | MR | MR | Zbl

[10] Hara O., “On origin and physical meaning of Ward-like identity in dual-resonance model”, Prog. Theor. Phys., 46:5 (1971), 1549–1559 | MR | Zbl

[11] M. O. Katanaev, “The nonrelativistic string”, Sov. J. Nucl. Phys., 48 (1988), 186–187

[12] L. D. Landau and E. M. Lifshitz, Theoretical Physics, v. 2, Field Theory, 7th ed., Nauka, Moscow, 1988 | MR | MR

[13] Course of Theoretical Physics, v. 2, The Classical Theory of Fields, Pergamon, Oxford, 1975 | MR | MR

[14] Nambu Y., “Duality and hadrodynamics (notes prepared for the Copenhagen High Energy Symposium, Aug. 1970)”, Broken symmetry: Selected papers of Y. Nambu, World Scientific, Singapore, 1995, 280–301 | MR

[15] Nielsen H.B., An almost physical interpretation of the integrand of the $N$-point Veneziano model, Preprint, Niels Bohr Inst., Copenhagen, 1970

[16] Susskind L., “Dual-symmetric theory of hadrons. I”, Nuovo Cimento A, 69 (1970), 457–496 | MR