Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a1, author = {E. T. Akhmedov and O. N. Diatlyk and A. G. Semenov}, title = {Out-of-Equilibrium {Two-Dimensional} {Yukawa} {Theory} in a {Strong} {Scalar} {Wave} {Background}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {18--37}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a1/} }
TY - JOUR AU - E. T. Akhmedov AU - O. N. Diatlyk AU - A. G. Semenov TI - Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 18 EP - 37 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a1/ LA - ru ID - TM_2020_309_a1 ER -
%0 Journal Article %A E. T. Akhmedov %A O. N. Diatlyk %A A. G. Semenov %T Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 18-37 %V 309 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_309_a1/ %G ru %F TM_2020_309_a1
E. T. Akhmedov; O. N. Diatlyk; A. G. Semenov. Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 18-37. http://geodesic.mathdoc.fr/item/TM_2020_309_a1/
[1] Akhmedov E.T., “IR divergences and kinetic equation in de Sitter space. (Poincaré patch; principal series)”, J. High Energy Phys., 2012:01 (2012), 066 ; arXiv: 1110.2257 | Zbl
[2] Akhmedov E.T., “Physical meaning and consequences of the loop infrared divergences in global de Sitter space”, Phys. Rev. D, 87:4 (2013), 044049 ; arXiv: 1209.4448
[3] Akhmedov E.T., “Lecture notes on interacting quantum fields in de Sitter space”, Int. J. Mod. Phys. D, 23:1 (2014), 1430001 ; arXiv: 1309.2557 | MR | Zbl
[4] Akhmedov E.T., Alexeev S.O., “Dynamical Casimir effect and loop corrections”, Phys. Rev. D, 96:6 (2017), 065001 ; arXiv: 1707.02242 | MR
[5] Akhmedov E.T., Astrakhantsev N., Popov F.K., “Secularly growing loop corrections in strong electric fields”, J. High Energy Phys., 2014:09 (2014), 071; arXiv: 1405.5285
[6] Akhmedov E.T., Bascone F., “Quantum heating as an alternative of reheating”, Phys. Rev. D, 97:4 (2018), 045013 ; arXiv: 1710.06118 | MR
[7] Akhmedov E.T., Buividovich P.V., “Interacting field theories in de Sitter space are nonunitary”, Phys. Rev. D, 78:10 (2008), 104005 ; arXiv: ; arXiv: 0808.41060905.2742 | MR
[8] E. T. Akhmedov, P. V. Buividovich, and D. A. Singleton, “De Sitter space and perpetuum mobile”, Phys. At. Nucl., 75:4 (2012), 525–529 ; Yad. Fiz., 75:4 (2012), 561–566; E-print, arXiv: 0905.2742
[9] Akhmedov E.T., Burda P., “Solution of the Dyson–Schwinger equation on a de Sitter background in the infrared limit”, Phys. Rev. D, 86:4 (2012), 044031 ; arXiv: 1202.1202
[10] Akhmedov E.T., Godazgar H., Popov F.K., “Hawking radiation and secularly growing loop corrections”, Phys. Rev. D, 93:2 (2016), 024029 ; arXiv: 1508.07500 | MR
[11] Akhmedov E.T., Moschella U., Pavlenko K.E., Popov F.K., “Infrared dynamics of massive scalars from the complementary series in de Sitter space”, Phys. Rev. D, 96:2 (2017), 025002 ; arXiv: 1701.07226 | MR
[12] Akhmedov E.T., Moschella U., Popov F.K., “Characters of different secular effects in various patches of de Sitter space”, Phys. Rev. D, 99:8 (2019), 086009 ; arXiv: 1901.07293 | MR
[13] Akhmedov E.T., Musaev E.T., “Comments on QED with background electric fields”, New J. Phys., 11:10 (2009), 103048 ; arXiv: 0901.0424
[14] Akhmedov E.T., Popov F.K., “A few more comments on secularly growing loop corrections in strong electric fields”, J. High Energy Phys., 2015:09 (2015), 085 ; arXiv: 1412.1554 | MR
[15] Akhmedov E.T., Popov F.K., Slepukhin V.M., “Infrared dynamics of the massive $\phi ^4$ theory on de Sitter space”, Phys. Rev. D, 88:2 (2013), 024021 ; arXiv: 1303.1068
[16] Alexeev S.O., Secularly growing loop corrections to the dynamical Casimir effect, E-print, 2017, arXiv: 1707.02838 | MR
[17] P. I. Arseev, “On the nonequilibrium diagram technique: Derivation, some features, and applications”, Phys. Usp., 58:12 (2015), 1159–1205
[18] Astrakhantsev L., Diatlyk O., “Massive scalar field theory in the presence of moving mirrors”, Int. J. Mod. Phys. A, 33:21 (2018), 1850126 ; arXiv: 1805.00549 | MR | Zbl
[19] Birrell N.D., Davies P.C.W., Quantum fields in curved space, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl
[20] Candelas P., “Vacuum polarization in Schwarzschild spacetime”, Phys. Rev. D, 21:8 (1980), 2185–2202 | MR
[21] Davies P.C.W., Fulling S.A., “Radiation from moving mirrors and from black holes”, Proc. R. Soc. London A, 356 (1977), 237–257 | MR
[22] Fulling S.A., Davies P.C.W., “Radiation from a moving mirror in two dimensional space–time: Conformal anomaly”, Proc. R. Soc. London A, 348 (1976), 393–414 | MR | Zbl
[23] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Nauka, Moscow, 1971 | MR | MR | Zbl
[24] Academic, Boston, 1994 | MR | MR | Zbl
[25] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Methods and Results Not Related to Perturbation Theory), Atomizdat, Moscow, 1980 (in Russian)
[26] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields, Energoatomizdat, Moscow, 1988
[27] Friedmann Lab., St. Petersburg, 1994
[28] Kamenev A., Field theory of non-equilibrium systems, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[29] Kravtsov V.E., “Course 4: Non-linear quantum coherence effects in driven mesoscopic systems”, Nanophysics: coherence and transport, Les Houches, 81, Elsevier, Amsterdam, 2005, 247–282
[30] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Nauka, Moscow, 1979 | MR
[31] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 10, Pergamon, Oxford, 1981 | MR
[32] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Nauka, Moscow, 1981 | MR | MR | Zbl | Zbl
[33] Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl
[34] Trunin D.A., “Comments on the adiabatic theorem”, Int. J. Mod. Phys. A, 33:24 (2018), 1850140 ; arXiv: 1805.04856 | MR | Zbl
[35] Yudson V.I., Kanzieper E., Kravtsov V.E., “Limits of the dynamical approach to the nonlinear response of mesoscopic systems”, Phys. Rev. B, 64:4 (2001), 045310