Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 18-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 2D Yukawa theory in a strong scalar wave background. We use operator and functional formalisms. In the latter the Schwinger–Keldysh diagram technique is used to calculate retarded, advanced and Keldysh propagators. We use simplest states in the two formalisms in question, which appear to be different from each other. As a result, the two Keldysh propagators found in different formalisms do not coincide, while the retarded and advanced ones do coincide. We use these propagators to calculate physical quantities such as the fermion stress–energy flux and the scalar current. One needs to know the latter to address the backreaction problem. It happens that while in the functional formalism (for the corresponding simplest state) we find zero fermion flux, in the operator formalism (for the corresponding simplest state) the flux is not zero and is proportional to a Schwarzian derivative. Meanwhile the scalar current is the same in both formalisms if the background field is large and slowly changing.
@article{TM_2020_309_a1,
     author = {E. T. Akhmedov and O. N. Diatlyk and A. G. Semenov},
     title = {Out-of-Equilibrium {Two-Dimensional} {Yukawa} {Theory} in a {Strong} {Scalar} {Wave} {Background}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {18--37},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a1/}
}
TY  - JOUR
AU  - E. T. Akhmedov
AU  - O. N. Diatlyk
AU  - A. G. Semenov
TI  - Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 18
EP  - 37
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a1/
LA  - ru
ID  - TM_2020_309_a1
ER  - 
%0 Journal Article
%A E. T. Akhmedov
%A O. N. Diatlyk
%A A. G. Semenov
%T Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 18-37
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a1/
%G ru
%F TM_2020_309_a1
E. T. Akhmedov; O. N. Diatlyk; A. G. Semenov. Out-of-Equilibrium Two-Dimensional Yukawa Theory in a Strong Scalar Wave Background. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 18-37. http://geodesic.mathdoc.fr/item/TM_2020_309_a1/

[1] Akhmedov E.T., “IR divergences and kinetic equation in de Sitter space. (Poincaré patch; principal series)”, J. High Energy Phys., 2012:01 (2012), 066 ; arXiv: 1110.2257 | Zbl

[2] Akhmedov E.T., “Physical meaning and consequences of the loop infrared divergences in global de Sitter space”, Phys. Rev. D, 87:4 (2013), 044049 ; arXiv: 1209.4448

[3] Akhmedov E.T., “Lecture notes on interacting quantum fields in de Sitter space”, Int. J. Mod. Phys. D, 23:1 (2014), 1430001 ; arXiv: 1309.2557 | MR | Zbl

[4] Akhmedov E.T., Alexeev S.O., “Dynamical Casimir effect and loop corrections”, Phys. Rev. D, 96:6 (2017), 065001 ; arXiv: 1707.02242 | MR

[5] Akhmedov E.T., Astrakhantsev N., Popov F.K., “Secularly growing loop corrections in strong electric fields”, J. High Energy Phys., 2014:09 (2014), 071; arXiv: 1405.5285

[6] Akhmedov E.T., Bascone F., “Quantum heating as an alternative of reheating”, Phys. Rev. D, 97:4 (2018), 045013 ; arXiv: 1710.06118 | MR

[7] Akhmedov E.T., Buividovich P.V., “Interacting field theories in de Sitter space are nonunitary”, Phys. Rev. D, 78:10 (2008), 104005 ; arXiv: ; arXiv: 0808.41060905.2742 | MR

[8] E. T. Akhmedov, P. V. Buividovich, and D. A. Singleton, “De Sitter space and perpetuum mobile”, Phys. At. Nucl., 75:4 (2012), 525–529 ; Yad. Fiz., 75:4 (2012), 561–566; E-print, arXiv: 0905.2742

[9] Akhmedov E.T., Burda P., “Solution of the Dyson–Schwinger equation on a de Sitter background in the infrared limit”, Phys. Rev. D, 86:4 (2012), 044031 ; arXiv: 1202.1202

[10] Akhmedov E.T., Godazgar H., Popov F.K., “Hawking radiation and secularly growing loop corrections”, Phys. Rev. D, 93:2 (2016), 024029 ; arXiv: 1508.07500 | MR

[11] Akhmedov E.T., Moschella U., Pavlenko K.E., Popov F.K., “Infrared dynamics of massive scalars from the complementary series in de Sitter space”, Phys. Rev. D, 96:2 (2017), 025002 ; arXiv: 1701.07226 | MR

[12] Akhmedov E.T., Moschella U., Popov F.K., “Characters of different secular effects in various patches of de Sitter space”, Phys. Rev. D, 99:8 (2019), 086009 ; arXiv: 1901.07293 | MR

[13] Akhmedov E.T., Musaev E.T., “Comments on QED with background electric fields”, New J. Phys., 11:10 (2009), 103048 ; arXiv: 0901.0424

[14] Akhmedov E.T., Popov F.K., “A few more comments on secularly growing loop corrections in strong electric fields”, J. High Energy Phys., 2015:09 (2015), 085 ; arXiv: 1412.1554 | MR

[15] Akhmedov E.T., Popov F.K., Slepukhin V.M., “Infrared dynamics of the massive $\phi ^4$ theory on de Sitter space”, Phys. Rev. D, 88:2 (2013), 024021 ; arXiv: 1303.1068

[16] Alexeev S.O., Secularly growing loop corrections to the dynamical Casimir effect, E-print, 2017, arXiv: 1707.02838 | MR

[17] P. I. Arseev, “On the nonequilibrium diagram technique: Derivation, some features, and applications”, Phys. Usp., 58:12 (2015), 1159–1205

[18] Astrakhantsev L., Diatlyk O., “Massive scalar field theory in the presence of moving mirrors”, Int. J. Mod. Phys. A, 33:21 (2018), 1850126 ; arXiv: 1805.00549 | MR | Zbl

[19] Birrell N.D., Davies P.C.W., Quantum fields in curved space, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl

[20] Candelas P., “Vacuum polarization in Schwarzschild spacetime”, Phys. Rev. D, 21:8 (1980), 2185–2202 | MR

[21] Davies P.C.W., Fulling S.A., “Radiation from moving mirrors and from black holes”, Proc. R. Soc. London A, 356 (1977), 237–257 | MR

[22] Fulling S.A., Davies P.C.W., “Radiation from a moving mirror in two dimensional space–time: Conformal anomaly”, Proc. R. Soc. London A, 348 (1976), 393–414 | MR | Zbl

[23] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Nauka, Moscow, 1971 | MR | MR | Zbl

[24] Academic, Boston, 1994 | MR | MR | Zbl

[25] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Strong External Fields (Methods and Results Not Related to Perturbation Theory), Atomizdat, Moscow, 1980 (in Russian)

[26] A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields, Energoatomizdat, Moscow, 1988

[27] Friedmann Lab., St. Petersburg, 1994

[28] Kamenev A., Field theory of non-equilibrium systems, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[29] Kravtsov V.E., “Course 4: Non-linear quantum coherence effects in driven mesoscopic systems”, Nanophysics: coherence and transport, Les Houches, 81, Elsevier, Amsterdam, 2005, 247–282

[30] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Nauka, Moscow, 1979 | MR

[31] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, 10, Pergamon, Oxford, 1981 | MR

[32] A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Nauka, Moscow, 1981 | MR | MR | Zbl | Zbl

[33] Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl

[34] Trunin D.A., “Comments on the adiabatic theorem”, Int. J. Mod. Phys. A, 33:24 (2018), 1850140 ; arXiv: 1805.04856 | MR | Zbl

[35] Yudson V.I., Kanzieper E., Kravtsov V.E., “Limits of the dynamical approach to the nonlinear response of mesoscopic systems”, Phys. Rev. B, 64:4 (2001), 045310