Knot Invariants in Geodesic Flows
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 50-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mean value of an asymptotic invariant of a knotted trajectory of a Ghys–Dehornoy geodesic flow is calculated. The result is important for investigating the magnetostatic equilibrium state of a magnetic field in a liquid conducting medium.
@article{TM_2020_308_a3,
     author = {P. M. Akhmet'ev},
     title = {Knot {Invariants} in {Geodesic} {Flows}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Knot Invariants in Geodesic Flows
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 50
EP  - 64
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a3/
LA  - ru
ID  - TM_2020_308_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Knot Invariants in Geodesic Flows
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 50-64
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a3/
%G ru
%F TM_2020_308_a3
P. M. Akhmet'ev. Knot Invariants in Geodesic Flows. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 50-64. http://geodesic.mathdoc.fr/item/TM_2020_308_a3/

[1] P. M. Akhmet'ev, “Embedding of compacta, stable homotopy groups of spheres, and singularity theory”, Russ. Math. Surv., 55:3 (2000), 405–462 | DOI | DOI | MR | Zbl

[2] Akhmetiev P.M., “On a new integral formula for an invariant of 3-component oriented links”, J. Geom. Phys., 53:2 (2005), 180–196 | DOI | MR | Zbl

[3] Akhmet'ev P.M., “On a higher integral invariant for closed magnetic lines”, J. Geom. Phys., 74 (2013), 381–391 | DOI | MR | Zbl

[4] Akhmet'ev P.M., “On combinatorial properties of a higher asymptotic ergodic invariant of magnetic lines”, J. Phys.: Conf. Ser., 544:1 (2014), 012015 | DOI

[5] Akhmet'ev P.M., “On Arnold's problem on higher analogs of the asymptotic Hopf invariant”, J. Math. Sci., 208:1 (2015), 24–35 | DOI | MR | Zbl

[6] Akhmet'ev P.M., Candelaresi S., Smirnov A.Y., “Minimum quadratic helicity states”, J. Plasma Phys., 84:6 (2018), 775840601 | DOI

[7] Arnol'd V.I., “The asymptotic Hopf invariant and its applications”, Sel. Math. Sov., 5:4 (1986), 327–345 | MR | Zbl

[8] Arnold V.I., Khesin B.A., Topological methods in hydrodynamics, Appl. Math. Sci., 125, Springer, New York, 2013 | MR

[9] Baader S., Marché J., “Asymptotic Vassiliev invariants for vector fields”, Bull. Soc. math. France, 140:4 (2012), 569–582 | DOI | MR | Zbl

[10] Dehornoy P., “Geodesic flow, left-handedness and templates”, Algebr. Geom. Topol., 15:3 (2015), 1525–1597 | DOI | MR | Zbl

[11] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884 | MR | Zbl

[12] Prasolov V.V., Sossinsky A.B., Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology, Transl. Math. Monogr., 154, Amer. Math. Soc., Providence, RI, 1997 | DOI | MR | Zbl

[13] Serr Zh.-P., Kurs arifmetiki, Mir, M., 1972 ; Serre J.-P., A course in arithmetic, Grad. Texts Math., 7, Springer, New York, 1973 ; J.-P. Serre, Cours d'arithmétique, Presses Univ. France, Paris, 1970 | MR | DOI | MR | Zbl | MR