Knot Invariants in Geodesic Flows
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 50-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The mean value of an asymptotic invariant of a knotted trajectory of a Ghys–Dehornoy geodesic flow is calculated. The result is important for investigating the magnetostatic equilibrium state of a magnetic field in a liquid conducting medium.
@article{TM_2020_308_a3,
     author = {P. M. Akhmet'ev},
     title = {Knot {Invariants} in {Geodesic} {Flows}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {50--64},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a3/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - Knot Invariants in Geodesic Flows
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 50
EP  - 64
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a3/
LA  - ru
ID  - TM_2020_308_a3
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T Knot Invariants in Geodesic Flows
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 50-64
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a3/
%G ru
%F TM_2020_308_a3
P. M. Akhmet'ev. Knot Invariants in Geodesic Flows. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 50-64. http://geodesic.mathdoc.fr/item/TM_2020_308_a3/