Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_308_a19, author = {A. V. Tsvetkova and A. I. Shafarevich}, title = {Localized {Asymptotic} {Solution} of a {Variable-Velocity} {Wave} {Equation} on the {Simplest} {Decorated} {Graph}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {265--275}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a19/} }
TY - JOUR AU - A. V. Tsvetkova AU - A. I. Shafarevich TI - Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 265 EP - 275 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_308_a19/ LA - ru ID - TM_2020_308_a19 ER -
%0 Journal Article %A A. V. Tsvetkova %A A. I. Shafarevich %T Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 265-275 %V 308 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_308_a19/ %G ru %F TM_2020_308_a19
A. V. Tsvetkova; A. I. Shafarevich. Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 265-275. http://geodesic.mathdoc.fr/item/TM_2020_308_a19/
[1] A. I. Allilueva, S. Yu. Dobrokhotov, S. A. Sergeev, and A. I. Shafarevich, “New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems”, Dokl. Math., 92:2 (2015), 548–553 | DOI | MR | Zbl
[2] Allilueva A.I., Shafarevich A.I., “On the distribution of energy of localized solutions of the Schrödinger equation that propagate along symmetric quantum graphs”, Russ. J. Math. Phys., 24:2 (2017), 139–147 | DOI | MR | Zbl
[3] Allilueva A.I., Shafarevich A.I., “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl
[4] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Math. Surv. Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl
[5] Brüning J., Geyler V.A., “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR | Zbl
[6] Dobrokhotov S.Yu., Shafarevich A.I., Tirozzi B., “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl
[7] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. P. Maslov, and A. I. Shafarevich, “Asymptotic fast-decreasing solutions of linear, strictly hyperbolic systems with variable coefficients”, Math. Notes, 49:4 (1991), 355–365 | DOI | MR | Zbl
[8] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | Zbl
[9] A. S. Mishchenko, V. E. Shatalov, and B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer Ser. Sov. Math., Springer, Berlin, 1990 | DOI | MR | Zbl
[10] B. S. Pavlov and M. D. Faddeev, “Model of free electrons and the scattering problem”, Theor. Math. Phys., 55:2 (1983), 485–492 | DOI | MR
[11] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, and S. A. Shabrov, Differential Equations on Geometric Graphs, Fizmatlit, Moscow, 2005 (in Russian)
[12] Shafarevich A.I., Tsvetkova A.V., “Localized asymptotic solution of the wave equation with a radially symmetric velocity on a simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR | Zbl
[13] Shafarevich A.I., Tsvetkova A.V., “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR | Zbl