Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 265-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a variable-velocity wave equation on the simplest decorated graph obtained by gluing a ray to the three-dimensional Euclidean space, with localized initial conditions on the ray. The wave operator should be self-adjoint, which implies some boundary conditions at the gluing point. We describe the leading part of the asymptotic solution of the problem using the construction of the Maslov canonical operator. The result is obtained for all possible boundary conditions at the gluing point.
@article{TM_2020_308_a19,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {Localized {Asymptotic} {Solution} of a {Variable-Velocity} {Wave} {Equation} on the {Simplest} {Decorated} {Graph}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {265--275},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a19/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 265
EP  - 275
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a19/
LA  - ru
ID  - TM_2020_308_a19
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 265-275
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a19/
%G ru
%F TM_2020_308_a19
A. V. Tsvetkova; A. I. Shafarevich. Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 265-275. http://geodesic.mathdoc.fr/item/TM_2020_308_a19/

[1] A. I. Allilueva, S. Yu. Dobrokhotov, S. A. Sergeev, and A. I. Shafarevich, “New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems”, Dokl. Math., 92:2 (2015), 548–553 | DOI | MR | Zbl

[2] Allilueva A.I., Shafarevich A.I., “On the distribution of energy of localized solutions of the Schrödinger equation that propagate along symmetric quantum graphs”, Russ. J. Math. Phys., 24:2 (2017), 139–147 | DOI | MR | Zbl

[3] Allilueva A.I., Shafarevich A.I., “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl

[4] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Math. Surv. Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl

[5] Brüning J., Geyler V.A., “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR | Zbl

[6] Dobrokhotov S.Yu., Shafarevich A.I., Tirozzi B., “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[7] S. Yu. Dobrokhotov, P. N. Zhevandrov, V. P. Maslov, and A. I. Shafarevich, “Asymptotic fast-decreasing solutions of linear, strictly hyperbolic systems with variable coefficients”, Math. Notes, 49:4 (1991), 355–365 | DOI | MR | Zbl

[8] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | Zbl

[9] A. S. Mishchenko, V. E. Shatalov, and B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer Ser. Sov. Math., Springer, Berlin, 1990 | DOI | MR | Zbl

[10] B. S. Pavlov and M. D. Faddeev, “Model of free electrons and the scattering problem”, Theor. Math. Phys., 55:2 (1983), 485–492 | DOI | MR

[11] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, and S. A. Shabrov, Differential Equations on Geometric Graphs, Fizmatlit, Moscow, 2005 (in Russian)

[12] Shafarevich A.I., Tsvetkova A.V., “Localized asymptotic solution of the wave equation with a radially symmetric velocity on a simplest decorated graph”, Russ. J. Math. Phys., 25:3 (2018), 333–344 | DOI | MR | Zbl

[13] Shafarevich A.I., Tsvetkova A.V., “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR | Zbl