Multiple Mixing with Respect to Noncoinciding Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 243-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class of systems without multiple mixing. The sets with respect to which the mixing is considered are not assumed to coincide. This class contains Ledrappier's example as a particular case. We prove that there are no multidimensional flows among such systems.
Keywords: measure-preserving transformations, dynamical systems, multiple mixing, Ledrappier's example.
@article{TM_2020_308_a17,
     author = {S. V. Tikhonov},
     title = {Multiple {Mixing} with {Respect} to {Noncoinciding} {Sets}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {243--252},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a17/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Multiple Mixing with Respect to Noncoinciding Sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 243
EP  - 252
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a17/
LA  - ru
ID  - TM_2020_308_a17
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Multiple Mixing with Respect to Noncoinciding Sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 243-252
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a17/
%G ru
%F TM_2020_308_a17
S. V. Tikhonov. Multiple Mixing with Respect to Noncoinciding Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 243-252. http://geodesic.mathdoc.fr/item/TM_2020_308_a17/

[1] Ledrappier F., “Un champ markovien peut être d'entropie nulle et mélangeant”, C. r. Acad. sci. Paris. Sér. A, 287:7 (1978), 561–563 | MR | Zbl

[2] De la Rue T., de Sam Lazaro J., “Une transformation générique peut être insérée dans un flot”, Ann. Inst. Henri Poincaré. Probab. Stat., 39:1 (2003), 121–134 | DOI | MR | Zbl

[3] V. V. Ryzhikov, “Mixing, rank, and minimal self-joining of actions with an invariant measure”, Sb. Math., 75:2 (1993), 405–427 | DOI | MR

[4] A. M. Stepin and A. M. Eremenko, “A generic preserving-measure transformation has an extensive centralizer”, Dokl. Math., 69:1 (2004), 123–126 | MR | MR | Zbl

[5] S. V. Tikhonov, “A generic action of the group $\mathbb Z^d$ can be embedded in an action of the group $\mathbb R^d$”, Dokl. Math., 68:1 (2003), 20–22 | MR | Zbl

[6] S. V. Tikhonov, “Embedding lattice actions in flows with multidimensional time”, Sb. Math., 197:1 (2006), 95–126 | DOI | DOI | MR | Zbl

[7] S. V. Tikhonov, “Rigidity of actions with extreme deviation from multiple mixing”, Math. Notes, 103:6 (2018), 977–989 | DOI | DOI | MR | Zbl