Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_308_a17, author = {S. V. Tikhonov}, title = {Multiple {Mixing} with {Respect} to {Noncoinciding} {Sets}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {243--252}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a17/} }
S. V. Tikhonov. Multiple Mixing with Respect to Noncoinciding Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 243-252. http://geodesic.mathdoc.fr/item/TM_2020_308_a17/
[1] Ledrappier F., “Un champ markovien peut être d'entropie nulle et mélangeant”, C. r. Acad. sci. Paris. Sér. A, 287:7 (1978), 561–563 | MR | Zbl
[2] De la Rue T., de Sam Lazaro J., “Une transformation générique peut être insérée dans un flot”, Ann. Inst. Henri Poincaré. Probab. Stat., 39:1 (2003), 121–134 | DOI | MR | Zbl
[3] V. V. Ryzhikov, “Mixing, rank, and minimal self-joining of actions with an invariant measure”, Sb. Math., 75:2 (1993), 405–427 | DOI | MR
[4] A. M. Stepin and A. M. Eremenko, “A generic preserving-measure transformation has an extensive centralizer”, Dokl. Math., 69:1 (2004), 123–126 | MR | MR | Zbl
[5] S. V. Tikhonov, “A generic action of the group $\mathbb Z^d$ can be embedded in an action of the group $\mathbb R^d$”, Dokl. Math., 68:1 (2003), 20–22 | MR | Zbl
[6] S. V. Tikhonov, “Embedding lattice actions in flows with multidimensional time”, Sb. Math., 197:1 (2006), 95–126 | DOI | DOI | MR | Zbl
[7] S. V. Tikhonov, “Rigidity of actions with extreme deviation from multiple mixing”, Math. Notes, 103:6 (2018), 977–989 | DOI | DOI | MR | Zbl