Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 210-221
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, by classical solutions we mean solutions to Fuchsian type meromorphic linear integrable Pfaffian systems $\mathrm d y=\Omega y$ on the complex linear spaces $\mathbb C^n$, $n\geq 1$, where $y(z) = (y_1(z),\dots ,y_n(z))^\top \in \mathbb C^n$ is a column vector and $\Omega $ is a meromorphic matrix differential $1$-form such that $\Omega =\sum _{1\leq i$, with constant matrix coefficients $J_{ij}(\beta )$ depending on complex parameters $\beta =(\beta _1,\dots ,\beta _n)$. Under some constraints on the constant matrix coefficients $J_{ij}(\beta )$, the solution components $y_i(z)$, $1\leq i\leq n$, can be expressed as integrals of products of powers of linear functions; i.e., they are generalizations of the integral representation of the classical hypergeometric function $F(z,a,b,c)$. Moreover, under some additional constraints on the parameters $\beta $, the components of the solutions are hyperelliptic, superelliptic, or polynomial functions. We describe such constraints on the coefficients $J_{ij}(\beta )$ of Fuchsian type systems, as well as describe constraints on the sets of matrices $(B_1(z),\dots ,B_n(z))$ for which the nonlinear Schlesinger equations $\mathrm dB_i(z)=-\sum _{j=1,\,j\neq i}^n[B_i(z),B_j(z)](z_i-z_j)^{-1}\,\mathrm d(z_i-z_j)$ reduce to linear integrable Pfaffian systems of the type described above and have solutions of the indicated type.
@article{TM_2020_308_a14,
author = {V. P. Leksin},
title = {Linear {Pfaffian} {Systems} and {Classical} {Solutions} of {Triangular} {Schlesinger} {Equations}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {210--221},
publisher = {mathdoc},
volume = {308},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a14/}
}
TY - JOUR AU - V. P. Leksin TI - Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 210 EP - 221 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_308_a14/ LA - ru ID - TM_2020_308_a14 ER -
V. P. Leksin. Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 210-221. http://geodesic.mathdoc.fr/item/TM_2020_308_a14/