Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_308_a14, author = {V. P. Leksin}, title = {Linear {Pfaffian} {Systems} and {Classical} {Solutions} of {Triangular} {Schlesinger} {Equations}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {210--221}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a14/} }
TY - JOUR AU - V. P. Leksin TI - Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 210 EP - 221 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_308_a14/ LA - ru ID - TM_2020_308_a14 ER -
V. P. Leksin. Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 210-221. http://geodesic.mathdoc.fr/item/TM_2020_308_a14/
[1] Aomoto K., “On the structure of integrals of power product of linear functions”, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 27 (1977), 49–61 | MR | Zbl
[2] Appell P., Kampé de Fériet M.J., Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite, Gauthier-Villars, Paris, 1926
[3] A. A. Bolibruch, Inverse Monodromy Problems in the Analytic Theory of Differential Equations, MTsNMO, Moscow, 2009 (in Russian)
[4] Deligne P., Mostow G.D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. math. Inst. hautes étud. sci., 63 (1986), 5–89 | DOI | MR | Zbl
[5] Dragović V., Gontsov R., Schramchenko V., Triangular Schlesinger systems and superelliptic curves, E-print, 2018, arXiv: 1812.09795v2 [math-ph]
[6] Dubrovin B., Mazzocco M., “On the reductions and classical solutions of the Schlesinger equations”, Differential equations and quantum groups: A.A. Bolibrukh memorial volume, IRMA Lect. Math. Theor. Phys., 9, ed. by D. Bertrand et al., Eur. Math. Soc. Publ. House, Zürich, 2007, 157–187 | MR | Zbl
[7] Feigin M.V., Veselov A.P., “$\vee $-systems, holonomy Lie algebras, and logarithmic vector fields”, Int. Math. Res. Not., 2018:7 (2018), 2070–2098 ; arXiv: 1409.2424v3 [math.RT] | DOI | MR | Zbl
[8] Gontsov R., Leksin V., “On the reducibility of Schlesinger isomonodromic families”, Analytic methods of analysis and differential equations: AMADE 2012, ed. by S.V. Rogosin, M.V. Dubatovskaya, Cambridge Sci. Publ., Cambridge, 2014, 21–34 | MR | Zbl
[9] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1944 | MR | Zbl
[10] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé: A modern theory of special functions, Aspects Math., E16, F. Vieweg Sohn, Braunschweig, 1991 | DOI | MR
[11] Kapovich M., Millson J.J., “Quantization of bending deformations of polygons in $\mathbb E^3$, hypergeometric integrals and the Gassner representation”, Can. Math. Bull., 44:1 (2001), 36–60 | DOI | MR | Zbl
[12] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Braids: Proc. AMS–IMS–SIAM Jt. Summer Res. Conf. (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 339–363 | DOI | MR
[13] V. P. Leksin, “Multidimensional Jordan–Pochhammer systems and their applications”, Proc. Steklov Inst. Math., 278 (2012), 130–138 | DOI | MR | Zbl
[14] V. P. Leksin, “Schlesinger's equations for upper triangular matrices and their solutions”, Sovrem. Mat., Fundam. Napravl., 64:1 (2018), 86–97 | MR
[15] Varchenko A., Special functions, KZ type equations, and representation theory, CBMS Reg. Conf. Ser. Math., 98, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl
[16] Varchenko A., Hyperelliptic integrals modulo $p$ and Cartier–Manin matrices, E-print, 2018, arXiv: 1806.03289v1 [math.AG]
[17] Veselov A.P., “Deformations of the root systems and new solutions to generalised WDVV equations”, Phys. Lett. A, 261:5–6 (1999), 297–302 | DOI | MR | Zbl
[18] Veselov A.P., “On geometry of a special class of solutions to generalized WDVV equations”, Integrability: The Seiberg–Witten and Whitham equations, Gordon and Breach Sci. Publ., Amsterdam, 2000, 125–135 | MR | Zbl
[19] Whittaker E.T., Watson G.N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Univ. Press, Cambridge, 1927 | MR | Zbl