Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 210-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by classical solutions we mean solutions to Fuchsian type meromorphic linear integrable Pfaffian systems $\mathrm d y=\Omega y$ on the complex linear spaces $\mathbb C^n$, $n\geq 1$, where $y(z) = (y_1(z),\dots ,y_n(z))^\top \in \mathbb C^n$ is a column vector and $\Omega $ is a meromorphic matrix differential $1$-form such that $\Omega =\sum _{1\leq i$, with constant matrix coefficients $J_{ij}(\beta )$ depending on complex parameters $\beta =(\beta _1,\dots ,\beta _n)$. Under some constraints on the constant matrix coefficients $J_{ij}(\beta )$, the solution components $y_i(z)$, $1\leq i\leq n$, can be expressed as integrals of products of powers of linear functions; i.e., they are generalizations of the integral representation of the classical hypergeometric function $F(z,a,b,c)$. Moreover, under some additional constraints on the parameters $\beta $, the components of the solutions are hyperelliptic, superelliptic, or polynomial functions. We describe such constraints on the coefficients $J_{ij}(\beta )$ of Fuchsian type systems, as well as describe constraints on the sets of matrices $(B_1(z),\dots ,B_n(z))$ for which the nonlinear Schlesinger equations $\mathrm dB_i(z)=-\sum _{j=1,\,j\neq i}^n[B_i(z),B_j(z)](z_i-z_j)^{-1}\,\mathrm d(z_i-z_j)$ reduce to linear integrable Pfaffian systems of the type described above and have solutions of the indicated type.
@article{TM_2020_308_a14,
     author = {V. P. Leksin},
     title = {Linear {Pfaffian} {Systems} and {Classical} {Solutions} of {Triangular} {Schlesinger} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {210--221},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a14/}
}
TY  - JOUR
AU  - V. P. Leksin
TI  - Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 210
EP  - 221
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a14/
LA  - ru
ID  - TM_2020_308_a14
ER  - 
%0 Journal Article
%A V. P. Leksin
%T Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 210-221
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a14/
%G ru
%F TM_2020_308_a14
V. P. Leksin. Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 210-221. http://geodesic.mathdoc.fr/item/TM_2020_308_a14/

[1] Aomoto K., “On the structure of integrals of power product of linear functions”, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo, 27 (1977), 49–61 | MR | Zbl

[2] Appell P., Kampé de Fériet M.J., Fonctions hypergéométriques et hypersphériques. Polynomes d'Hermite, Gauthier-Villars, Paris, 1926

[3] A. A. Bolibruch, Inverse Monodromy Problems in the Analytic Theory of Differential Equations, MTsNMO, Moscow, 2009 (in Russian)

[4] Deligne P., Mostow G.D., “Monodromy of hypergeometric functions and non-lattice integral monodromy”, Publ. math. Inst. hautes étud. sci., 63 (1986), 5–89 | DOI | MR | Zbl

[5] Dragović V., Gontsov R., Schramchenko V., Triangular Schlesinger systems and superelliptic curves, E-print, 2018, arXiv: 1812.09795v2 [math-ph]

[6] Dubrovin B., Mazzocco M., “On the reductions and classical solutions of the Schlesinger equations”, Differential equations and quantum groups: A.A. Bolibrukh memorial volume, IRMA Lect. Math. Theor. Phys., 9, ed. by D. Bertrand et al., Eur. Math. Soc. Publ. House, Zürich, 2007, 157–187 | MR | Zbl

[7] Feigin M.V., Veselov A.P., “$\vee $-systems, holonomy Lie algebras, and logarithmic vector fields”, Int. Math. Res. Not., 2018:7 (2018), 2070–2098 ; arXiv: 1409.2424v3 [math.RT] | DOI | MR | Zbl

[8] Gontsov R., Leksin V., “On the reducibility of Schlesinger isomonodromic families”, Analytic methods of analysis and differential equations: AMADE 2012, ed. by S.V. Rogosin, M.V. Dubatovskaya, Cambridge Sci. Publ., Cambridge, 2014, 21–34 | MR | Zbl

[9] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1944 | MR | Zbl

[10] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé: A modern theory of special functions, Aspects Math., E16, F. Vieweg Sohn, Braunschweig, 1991 | DOI | MR

[11] Kapovich M., Millson J.J., “Quantization of bending deformations of polygons in $\mathbb E^3$, hypergeometric integrals and the Gassner representation”, Can. Math. Bull., 44:1 (2001), 36–60 | DOI | MR | Zbl

[12] Kohno T., “Linear representations of braid groups and classical Yang–Baxter equations”, Braids: Proc. AMS–IMS–SIAM Jt. Summer Res. Conf. (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 339–363 | DOI | MR

[13] V. P. Leksin, “Multidimensional Jordan–Pochhammer systems and their applications”, Proc. Steklov Inst. Math., 278 (2012), 130–138 | DOI | MR | Zbl

[14] V. P. Leksin, “Schlesinger's equations for upper triangular matrices and their solutions”, Sovrem. Mat., Fundam. Napravl., 64:1 (2018), 86–97 | MR

[15] Varchenko A., Special functions, KZ type equations, and representation theory, CBMS Reg. Conf. Ser. Math., 98, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[16] Varchenko A., Hyperelliptic integrals modulo $p$ and Cartier–Manin matrices, E-print, 2018, arXiv: 1806.03289v1 [math.AG]

[17] Veselov A.P., “Deformations of the root systems and new solutions to generalised WDVV equations”, Phys. Lett. A, 261:5–6 (1999), 297–302 | DOI | MR | Zbl

[18] Veselov A.P., “On geometry of a special class of solutions to generalized WDVV equations”, Integrability: The Seiberg–Witten and Whitham equations, Gordon and Breach Sci. Publ., Amsterdam, 2000, 125–135 | MR | Zbl

[19] Whittaker E.T., Watson G.N., A course of modern analysis: An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Univ. Press, Cambridge, 1927 | MR | Zbl