Stabilization of Statistical Solutions for an Infinite Inhomogeneous Chain of Harmonic Oscillators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 181-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

An infinite inhomogeneous harmonic chain of particles with different force constants of interaction is considered. The large time behavior of distributions of the solutions to the Cauchy problem with random initial data is studied. The main result of the paper establishes the convergence of these distributions to a limiting measure.
@article{TM_2020_308_a12,
     author = {T. V. Dudnikova},
     title = {Stabilization of {Statistical} {Solutions} for an {Infinite} {Inhomogeneous} {Chain} of {Harmonic} {Oscillators}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--196},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a12/}
}
TY  - JOUR
AU  - T. V. Dudnikova
TI  - Stabilization of Statistical Solutions for an Infinite Inhomogeneous Chain of Harmonic Oscillators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 181
EP  - 196
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a12/
LA  - ru
ID  - TM_2020_308_a12
ER  - 
%0 Journal Article
%A T. V. Dudnikova
%T Stabilization of Statistical Solutions for an Infinite Inhomogeneous Chain of Harmonic Oscillators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 181-196
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a12/
%G ru
%F TM_2020_308_a12
T. V. Dudnikova. Stabilization of Statistical Solutions for an Infinite Inhomogeneous Chain of Harmonic Oscillators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 181-196. http://geodesic.mathdoc.fr/item/TM_2020_308_a12/

[1] Boldrighini C., Pellegrinotti A., Triolo L., “Convergence to stationary states for infinite harmonic systems”, J. Stat. Phys., 30 (1983), 123–155 | DOI | MR

[2] Dudnikova T.V., “On the asymptotical normality of statistical solutions for harmonic crystals in half-space”, Russ. J. Math. Phys., 15:4 (2008), 460–472 | DOI | MR | Zbl

[3] Dudnikova T.V., “On convergence to equilibrium for one-dimensional chain of harmonic oscillators on the half-line”, J. Math. Phys., 58:4 (2017), 043301 | DOI | MR | Zbl

[4] Dudnikova T.V., “Behavior for large time of a two-component chain of harmonic oscillators”, Russ. J. Math. Phys., 25:4 (2018), 470–491 | DOI | MR | Zbl

[5] Dudnikova T.V., Komech A.I., Mauser N.J., “On two-temperature problem for harmonic crystals”, J. Stat. Phys., 114:3/4 (2004), 1035–1083 | DOI | MR | Zbl

[6] Dudnikova T.V., Komech A.I., Spohn H., “On the convergence to statistical equilibrium for harmonic crystals”, J. Math. Phys., 44:6 (2003), 2596–2620 | DOI | MR | Zbl

[7] I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Nauka, Moscow, 1965 | MR | Zbl

[8] Wolters-Noordhoff, Groningen, 1971 | MR | Zbl

[9] Komech A.I., Kopylova E.A., Kunze M., “Dispersive estimates for 1D discrete Schrödinger and Klein–Gordon equations”, Appl. Anal., 85:12 (2006), 1487–1508 | DOI | MR | Zbl

[10] Spohn H., Lebowitz J.L., “Stationary non-equilibrium states of infinite harmonic systems”, Commun. Math. Phys., 54:2 (1977), 97–120 | DOI | MR