An Example of a Fractal Finitely Generated Solvable Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 142-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fractal group is a group with unbounded iterated identity. In this paper a finitely generated fractal solvable group is constructed.
@article{TM_2019_307_a6,
     author = {Roman V. Mikhailov},
     title = {An {Example} of a {Fractal} {Finitely} {Generated} {Solvable} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {142--147},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a6/}
}
TY  - JOUR
AU  - Roman V. Mikhailov
TI  - An Example of a Fractal Finitely Generated Solvable Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 142
EP  - 147
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a6/
LA  - ru
ID  - TM_2019_307_a6
ER  - 
%0 Journal Article
%A Roman V. Mikhailov
%T An Example of a Fractal Finitely Generated Solvable Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 142-147
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a6/
%G ru
%F TM_2019_307_a6
Roman V. Mikhailov. An Example of a Fractal Finitely Generated Solvable Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 142-147. http://geodesic.mathdoc.fr/item/TM_2019_307_a6/

[1] Abels H., “An example of a finitely presented solvable group”, Homological group theory, Proc. Symp. (Durham, 1977), LMS Lect. Note Ser., 36, Cambridge Univ. Press, Cambridge, 1979, 205–211 | MR

[2] Erschler A., “Iterated identities and iterational depth of groups”, J. Mod. Dyn., 9 (2015), 257–284 | DOI | MR | Zbl

[3] E. S. Golod and I. R. Šafarevič, “On class field towers”, Am. Math. Soc. Transl., Ser. 2, 48 (1965), 91–102 | MR | Zbl | Zbl

[4] R. I. Grigorchuk, “On Milnor's problem of group growth”, Sov. Math., Dokl., 28 (1983), 23–26 | MR | Zbl

[5] O. G. Harlampovič, “A finitely presented solvable group with unsolvable word problem”, Math. USSR, Izv., 19:1 (1982), 151–169 | DOI | MR | Zbl