Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 78-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\ell $ be a regular odd prime number, $k$ the $\ell $th cyclotomic field, $k_\infty $ the cyclotomic $\mathbb Z_\ell $-extension of $k$, $K$ a cyclic extension of $k$ of degree $\ell $, and $K_\infty =K\cdot k_\infty $. Under the assumption that there are exactly three places not over $\ell $ that ramify in the extension $K_\infty /k_\infty $ and $K$ satisfies some additional conditions, we study the structure of the Iwasawa module $T_\ell (K_\infty )$ of $K_\infty $ as a Galois module. In particular, we prove that $T_\ell (K_\infty )$ is a cyclic $G(K_\infty /k_\infty )$-module and the Galois group $\Gamma =G(K_\infty /K)$ acts on $T_\ell (K_\infty )$ as $\sqrt {\varkappa }$, where $\varkappa \colon \Gamma \to \mathbb Z_\ell ^\times $ is the cyclotomic character.
@article{TM_2019_307_a3,
     author = {L. V. Kuz'min},
     title = {Arithmetic of {Certain} $\ell ${-Extensions} {Ramified} at {Three} {Places}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {78--99},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a3/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 78
EP  - 99
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a3/
LA  - ru
ID  - TM_2019_307_a3
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T Arithmetic of Certain $\ell $-Extensions Ramified at Three Places
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 78-99
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a3/
%G ru
%F TM_2019_307_a3
L. V. Kuz'min. Arithmetic of Certain $\ell $-Extensions Ramified at Three Places. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 78-99. http://geodesic.mathdoc.fr/item/TM_2019_307_a3/

[1] L. V. Kuz'min, “Some remarks on the $l$-adic regulator. II”, Math. USSR, Izv., 35:1 (1990), 113–144 | DOI | MR | Zbl

[2] L. V. Kuz'min, “An analog of the Riemann–Hurwitz formula for one type of $l$-extension of algebraic number fields”, Math. USSR, Izv., 36:2 (1991), 325–347 | DOI | MR | Zbl

[3] L. V. Kuz'min, “New explicit formulas for the norm residue symbol, and their applications”, Math. USSR, Izv., 37:3 (1991), 555–586 | DOI | MR

[4] I. R. Shafarevich, Zeta Function. 1966–67, Mosk. Gos. Univ., Moscow, 1969 (in Russian)

[5] L. V. Kuz'min, “The Tate module for algebraic number fields”, Math. USSR, Izv., 6:2 (1972), 263–321 | DOI | Zbl