Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327

Voir la notice de l'article provenant de la source Math-Net.Ru

Semiclassical spectral series of the Laplace operator on a two-dimensional surface of revolution with a conical point are described. It is shown that in many cases asymptotic eigenvalues can be calculated from the quantization conditions on special Lagrangian tori, with the Maslov index of such tori being replaced by a real invariant expressed in terms of the cone apex angle.
@article{TM_2019_307_a17,
     author = {A. I. Shafarevich},
     title = {Lagrangian {Tori} and {Quantization} {Conditions} {Corresponding} to {Spectral} {Series} of the {Laplace} {Operator} on a {Surface} of {Revolution} with {Conical} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {319--327},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a17/}
}
TY  - JOUR
AU  - A. I. Shafarevich
TI  - Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 319
EP  - 327
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a17/
LA  - ru
ID  - TM_2019_307_a17
ER  - 
%0 Journal Article
%A A. I. Shafarevich
%T Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 319-327
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a17/
%G ru
%F TM_2019_307_a17
A. I. Shafarevich. Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327. http://geodesic.mathdoc.fr/item/TM_2019_307_a17/