Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327
Voir la notice de l'article provenant de la source Math-Net.Ru
Semiclassical spectral series of the Laplace operator on a two-dimensional surface of revolution with a conical point are described. It is shown that in many cases asymptotic eigenvalues can be calculated from the quantization conditions on special Lagrangian tori, with the Maslov index of such tori being replaced by a real invariant expressed in terms of the cone apex angle.
@article{TM_2019_307_a17,
author = {A. I. Shafarevich},
title = {Lagrangian {Tori} and {Quantization} {Conditions} {Corresponding} to {Spectral} {Series} of the {Laplace} {Operator} on a {Surface} of {Revolution} with {Conical} {Points}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {319--327},
publisher = {mathdoc},
volume = {307},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a17/}
}
TY - JOUR AU - A. I. Shafarevich TI - Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 319 EP - 327 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a17/ LA - ru ID - TM_2019_307_a17 ER -
%0 Journal Article %A A. I. Shafarevich %T Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 319-327 %V 307 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_307_a17/ %G ru %F TM_2019_307_a17
A. I. Shafarevich. Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327. http://geodesic.mathdoc.fr/item/TM_2019_307_a17/