Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

Semiclassical spectral series of the Laplace operator on a two-dimensional surface of revolution with a conical point are described. It is shown that in many cases asymptotic eigenvalues can be calculated from the quantization conditions on special Lagrangian tori, with the Maslov index of such tori being replaced by a real invariant expressed in terms of the cone apex angle.
@article{TM_2019_307_a17,
     author = {A. I. Shafarevich},
     title = {Lagrangian {Tori} and {Quantization} {Conditions} {Corresponding} to {Spectral} {Series} of the {Laplace} {Operator} on a {Surface} of {Revolution} with {Conical} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {319--327},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a17/}
}
TY  - JOUR
AU  - A. I. Shafarevich
TI  - Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 319
EP  - 327
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a17/
LA  - ru
ID  - TM_2019_307_a17
ER  - 
%0 Journal Article
%A A. I. Shafarevich
%T Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 319-327
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a17/
%G ru
%F TM_2019_307_a17
A. I. Shafarevich. Lagrangian Tori and Quantization Conditions Corresponding to Spectral Series of the Laplace Operator on a Surface of Revolution with Conical Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 319-327. http://geodesic.mathdoc.fr/item/TM_2019_307_a17/

[1] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Asymptotics, related to billiards with semi-rigid walls, of eigenfunctions of the $\nabla D(x)\nabla $ operator in dimension 2 and trapped coastal waves”, Math. Notes, 105:5 (2019), 789–794 | DOI | DOI | MR | Zbl

[2] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation”, Math. Notes, 100:5 (2016), 695–713 | DOI | DOI | MR | Zbl

[3] M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka, Moscow, 1983 | MR | Zbl | Zbl

[4] Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin, 1993 | MR | Zbl | Zbl

[5] T. A. Filatova and A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theor. Math. Phys., 164:2 (2010), 1064–1080 | DOI | DOI | MR | Zbl

[6] Hillairet L., “Spectral theory of translation surfaces: A short introduction”, Actes de séminaire de théorie spectrale et géométrie. Année 2009–2010, Semin. théor. spectr. géom., 28, Univ. Grenoble I, Inst. Fourier, St. Martin d'Hères, 2010, 51–62 | MR | Zbl

[7] V. P. Maslov, Asymptotic Methods and Perturbation Theory, Nauka, Moscow, 1988 (in Russian) | MR | Zbl

[8] V. P. Maslov and M. V. Fedoryuk, Semi-classical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 | MR | Zbl

[9] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | MR | Zbl

[10] V. E. Nazaikinskii, “Degenerate wave equation with localized initial data: Asymptotic solutions corresponding to various self-adjoint extensions”, Math. Notes, 89:5 (2011), 749–753 | DOI | DOI | MR | Zbl

[11] V. E. Nazaikinskii, “Phase space geometry for a wave equation degenerating on the boundary of the domain”, Math. Notes, 92:1 (2012), 144–148 | DOI | DOI | MR | Zbl

[12] V. E. Nazaikinskii, “The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary”, Math. Notes, 96:2 (2014), 248–260 | DOI | DOI | MR | Zbl

[13] T. Ratiu, T. A. Filatova, and A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl

[14] Ratiu T.S., Suleimanova A.A., Shafarevich A.I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl