Orbit Closures of the Witt Group Actions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 212-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any prime $p$ there exists an algebraic action of the two-dimensional Witt group $W_2(p)$ on an algebraic variety $X$ such that the closure in $X$ of the $W_2(p)$-orbit of some point $x\in X$ contains infinitely many $W_2(p)$-orbits. This is related to the problem of extending, from the case of characteristic zero to the case of characteristic $p$, the classification of connected affine algebraic groups $G$ such that every algebraic $G$-variety with a dense open $G$-orbit contains only finitely many $G$-orbits.
@article{TM_2019_307_a10,
     author = {Vladimir L. Popov},
     title = {Orbit {Closures} of the {Witt} {Group} {Actions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {212--216},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a10/}
}
TY  - JOUR
AU  - Vladimir L. Popov
TI  - Orbit Closures of the Witt Group Actions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 212
EP  - 216
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a10/
LA  - ru
ID  - TM_2019_307_a10
ER  - 
%0 Journal Article
%A Vladimir L. Popov
%T Orbit Closures of the Witt Group Actions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 212-216
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a10/
%G ru
%F TM_2019_307_a10
Vladimir L. Popov. Orbit Closures of the Witt Group Actions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 212-216. http://geodesic.mathdoc.fr/item/TM_2019_307_a10/

[1] D. N. Akhiezer, “Actions with a finite number of orbits”, Funct. Anal. Appl., 19:1 (1985), 1–4 | DOI | MR | Zbl

[2] Arnold V.I., “Critical points of smooth functions”, Proc. Int. Congr. Math. (Vancouver, 1974), v. 1, Can. Math. Congr., Montreal, 1975, 19–39 | MR

[3] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[4] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal embeddings I, Lect. Notes Math., 339, Springer, Berlin, 1973 | DOI | MR | Zbl

[5] Luna D., Vust Th., “Plongements d'espaces homogènes”, Comment. math. Helv., 58 (1983), 186–245 | DOI | MR | Zbl

[6] Popov V.L., Algebraic groups whose orbit closures contain only finitely many orbits, E-print, 2017, arXiv: 1707.06914v1 [math.AG]

[7] Popov V.L., “Modality of representations, and packets for $\theta $-groups”, Lie groups, geometry, and representation theory: A tribute to the life and work of Bertram Kostant, Prog. Math., 326, Springer, Cham, 2018, 459–579 | DOI | MR

[8] Rosenlicht M., “On quotient varieties and the affine embedding of certain homogeneous spaces”, Trans. Amer. Math. Soc., 101:2 (1961), 211–223 | DOI | MR | Zbl

[9] Serre J.-P., Groupes algébriques et corps de classes, v. 7, Actual. Sci. Ind., 1264, Hermann, Paris, 1984 | MR

[10] Timashev D.A., Homogeneous spaces and equivariant embeddings, v. 8, Encycl. Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, Springer, Heidelberg, 2011 | MR | Zbl

[11] É. B. Vinberg, “Complexity of action of reductive groups”, Funct. Anal. Appl., 20:1 (1986), 1–11 | DOI | MR | Zbl