Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_306_a9, author = {D. V. Zavadsky and V. Zh. Sakbaev}, title = {Diffusion on a {Hilbert} {Space} {Equipped} with a {Shift-} and {Rotation-Invariant} {Measure}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {112--130}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a9/} }
TY - JOUR AU - D. V. Zavadsky AU - V. Zh. Sakbaev TI - Diffusion on a Hilbert Space Equipped with a Shift- and Rotation-Invariant Measure JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 112 EP - 130 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a9/ LA - ru ID - TM_2019_306_a9 ER -
%0 Journal Article %A D. V. Zavadsky %A V. Zh. Sakbaev %T Diffusion on a Hilbert Space Equipped with a Shift- and Rotation-Invariant Measure %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 112-130 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_306_a9/ %G ru %F TM_2019_306_a9
D. V. Zavadsky; V. Zh. Sakbaev. Diffusion on a Hilbert Space Equipped with a Shift- and Rotation-Invariant Measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 112-130. http://geodesic.mathdoc.fr/item/TM_2019_306_a9/
[1] Baker R., ““Lebesgue measure” on $\mathbf R^\infty $”, Proc. Amer. Math. Soc., 113:4 (1991), 1023–1029 | MR | Zbl
[2] V. I. Bogachev, Gaussian Measures, Nauka, Moscow, 1997 | DOI | MR | MR | Zbl | Zbl
[3] Gaussian Measures, Math. Surv. Monogr., 62, Am. Math. Soc., Providence, RI, 1998 | DOI | MR | MR | Zbl | Zbl
[4] V. I. Bogachev, Foundations of Measure Theory, v. 1, Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2006 | Zbl
[5] Measure Theory, v. 1, Springer, Berlin, 2007 | Zbl
[6] V. I. Bogachev, N. V. Krylov, and M. Röckner, “Elliptic and parabolic equations for measures”, Russ. Math. Surv., 64:6 (2009), 973–1078 | DOI | DOI | MR | Zbl
[7] Borisov L.A., Orlov Yu.N., Sakbaev V.Zh., “Feynman averaging of semigroups generated by Schrödinger operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850010 | DOI | MR | Zbl
[8] Butko Ya.A., Schilling R.L., Smolyanov O.G., “Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 15:3 (2012), 1250015 | DOI | MR | Zbl
[9] Chernoff P.R., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2:2 (1968), 238–242 | DOI | MR | Zbl
[10] Yu. L. Daletski and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces, Nauka, Moscow, 1983 | MR | Zbl | Zbl
[11] Measures and Differential Equations in Infinite-Dimensional Space, Math. Appl., Sov. Ser., 76, Kluwer, Dordrecht, 1991 | MR | Zbl | Zbl
[12] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Am. Math. Soc., Providence, RI, 1957 | MR
[13] Hui-Hsiung Kuo, Gaussian Measures in Banach Spaces, Springer, Berlin, 1975 | MR | Zbl
[14] Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae”, Izv. Math., 80:6 (2016), 1131–1158 | DOI | DOI | MR | Zbl
[15] V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russ. Math., 60:10 (2016), 72–76 | DOI | MR | Zbl
[16] V. Zh. Sakbaev, “Averaging of random walks and shift-invariant measures on a Hilbert space”, Theor. Math. Phys., 191:3 (2017), 886–909 | DOI | DOI | MR | Zbl
[17] V. Zh. Sakbaev, “Random walks and measures on Hilbert space that are invariant with respect to shifts and rotations”, J. Math. Sci., 241:4 (2019), 469–500 | DOI | MR | Zbl
[18] V. Zh. Sakbaev, “On the properties of semigroups generated by random walks in infinite-dimensional space”, Tr. Mosk. Fiz.-Tekh. Inst., 9:1 (2017), 12–21 | MR
[19] V. G. Sakbaev and O. G. Smolyanov, “Analogues of Feynman formulas for ill-posed problems associated with the Schrödinger equation”, Dokl. Math., 94:3 (2016), 654–658 | DOI | MR | Zbl
[20] A. V. Skorokhod, “Products of independent random operators”, Russ. Math. Surv., 38:4 (1983), 291–318 | DOI | MR | Zbl
[21] M. G. Sonis, “On some measurable subspaces of the space of all sequences with Gaussian measure”, Usp. Mat. Nauk, 21:5 (1966), 277–279 | MR
[22] Remizov I.D., “Quasi-Feynman formulas—a method of obtaining the evolution operator for the Schrödinger equation”, J. Funct. Anal., 270:12 (2016), 4540–4557 | DOI | MR | Zbl
[23] A. D. Venttsel' and M. I. Freidlin, Fluctuations in Dynamical Systems Subject to Small Random Perturbations, Nauka, Moscow, 1979 | MR | MR | Zbl | Zbl
[24] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundl. Math. Wiss., 260, Springer, New York, 1984 | MR | MR | Zbl | Zbl
[25] N. K. Vereshchagin and A. Shen', Lectures on Mathematical Logic and the Theory of Algorithms, {Part 1:} Basics of Set Theory, MTsNMO, Moscow, 2002 (in Russian) | MR
[26] A. M. Vershik, “Does there exist a Lebesgue measure in the infinite-dimensional space?”, Proc. Steklov Inst. Math., 259 (2007), 248–272 | DOI | MR | Zbl
[27] A. Weil, L'intégration dans les groupes topologiques et ses applications, Hermann, Paris, 1940 | MR
[28] D. V. Zavadsky, “Shift-invariant measures on sequence spaces”, Tr. Mosk. Fiz.-Tekh. Inst., 9:4 (2017), 142–148