Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 83-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

We express the asymptotic eigenfunctions of the operator $-\frac{d}{dx}D(x)\frac{d}{dx}$ that degenerates at the endpoints of an interval in terms of the modified Maslov canonical operator introduced in our previous studies.
@article{TM_2019_306_a7,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Nonstandard {Lagrangian} {Singularities} and {Asymptotic} {Eigenfunctions} of the {Degenerating} {Operator} $-\frac{d}{dx}D(x)\frac{d}{dx}$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {83--99},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a7/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 83
EP  - 99
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a7/
LA  - ru
ID  - TM_2019_306_a7
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 83-99
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a7/
%G ru
%F TM_2019_306_a7
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Nonstandard Lagrangian Singularities and Asymptotic Eigenfunctions of the Degenerating Operator $-\frac{d}{dx}D(x)\frac{d}{dx}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 83-99. http://geodesic.mathdoc.fr/item/TM_2019_306_a7/

[1] A. Yu. Anikin, S. Yu. Dobrokhotov, and V. E. Nazaikinskii, “Simple asymptotics for a generalized wave equation with degenerating velocity and their applications in the linear long wave run-up problem”, Mat. Notes, 104:4 (2018), 471–488 | DOI | DOI | MR | MR | Zbl

[2] V. I. Arnol'd, “Characteristic class entering in quantization conditions”, Funct. Anal. Appl., 1:1 (1967), 1–13 | DOI | MR | Zbl

[3] V. I. Arnold, Mathematical Methods of Classical Mechanics, Nauka, Moscow, 1989 | DOI | MR | Zbl | Zbl

[4] Mathematical Methods of Classical Mechanics, Grad. Texts Math., 60, Springer, New York, 1978 | DOI | MR | Zbl | Zbl

[5] V. I. Arnold, A. N. Varchenko, and S. M. Gusein-Zade, Singularities of Differentiable Maps: The Classification of Critical Points, Caustics and Wave Fronts, Nauka, Moscow, 1982 | MR | MR | Zbl

[6] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, v. 1, Monogr. Math., 82, The Classification of Critical Points, Caustics and Wave Fronts, Birkhäuser, Boston, 1985 | MR | MR | Zbl

[7] M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Leningr. Gos. Univ., Leningrad, 1980 | MR | Zbl

[8] Kluwer, Dordrecht, 1987 | MR | Zbl

[9] Carrier G.F., Greenspan H.P., “Water waves of finite amplitude on a sloping beach”, J. Fluid Mech., 4:1 (1958), 97–109 | DOI | MR | Zbl

[10] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation”, Math. Notes, 100:5 (2016), 695–713 | DOI | DOI | MR | Zbl

[11] S. Yu. Dobrokhotov and V. E. Nazaikinskii, “On the asymptotics of a Bessel-type integral having applications in wave run-up theory”, Math. Notes, 102:6 (2017), 756–762 | DOI | DOI | MR | Zbl

[12] Dobrokhotov S.Yu., Nazaikinskii V.E., Tirozzi B., “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl

[13] S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi, “Asymptotic solutions of the two-dimensional model wave equation with degenerating velocity and localized initial data”, St. Petersburg Math. J., 22:6 (2011), 895–911 | DOI | MR | Zbl

[14] Dobrokhotov S.Yu., Nazaikinskii V.E., Tirozzi B., “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys., 20:4 (2013), 389–401 | DOI | MR | Zbl

[15] S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. A. Tolchennikov, “Uniform asymptotics of the boundary values of the solution in a linear problem on the run-up of waves on a shallow beach”, Math. Notes, 101:5 (2017), 802–814 ; Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Preobrazovaniya Besselya. Integraly ot spetsialnykh funktsii, Nauka, M., 1970 | DOI | DOI | MR | Zbl

[16] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Tables of Integral Transforms. Based, in Part, on Notes Left by Harry Bateman, v. 2, Bateman Manuscript Project, Calif. Inst. Technol., McGraw-Hill, New York, 1954 | MR | Zbl

[17] M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka, Moscow, 1983 | MR | Zbl | Zbl

[18] Asymptotic Analysis: Linear Ordinary Differential Equations, Springer, Berlin, 1993 | MR | Zbl | Zbl

[19] V. A. Fock, “On the canonical transformation in classical and quantum mechanics”, Vestn. Leningr. Univ., Fiz., Khim., 1959, no. 16, 67–70 | DOI | MR

[20] Acta Phys. Acad. Sci. Hung., 27 (1969), 219–224 | DOI | MR

[21] A. M. Il'in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Nauka, Moscow, 1989 | DOI | MR | Zbl | Zbl

[22] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Transl. Math. Monogr., 102, Am. Math. Soc., Providence, RI, 1992 | DOI | MR | Zbl | Zbl

[23] V. P. Maslov, Perturbation Theory and Asymptotic Methods, Mosk. Gos. Univ., Moscow, 1965 (in Russian)

[24] V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 | MR | MR | Zbl

[25] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, D. Reidel, Dordrecht, 1981 | MR | MR | Zbl

[26] A. S. Mishchenko, B. Yu. Sternin, and V. E. Shatalov, Lagrangian Manifolds and the Canonical Operator Method, Nauka, Moscow, 1978 | DOI | MR | MR | Zbl

[27] A. S. Mishchenko, V. E. Shatalov, and B. Yu. Sternin, Lagrangian Manifolds and the Maslov Operator, Springer Ser. Sov. Math., Springer, Berlin, 1990 | DOI | MR | MR | Zbl

[28] V. E. Nazaikinskii, “Phase space geometry for a wave equation degenerating on the boundary of the domain”, Math. Notes, 92:1 (2012), 144–148 | DOI | DOI | MR | Zbl

[29] V. E. Nazaikinskii, “The Maslov canonical operator on Lagrangian manifolds in the phase space corresponding to a wave equation degenerating on the boundary”, Math. Notes, 96:2 (2014), 248–260 | DOI | DOI | MR | Zbl

[30] O. A. Oleinik and E. V. Radkevich, Second Order Equations with Nonnegative Characteristic Form, Itogi Nauki, Ser. Mat., Mat. Anal. 1969, VINITI, Moscow, 1971 | MR | MR

[31] O. A. Oleĭnik and E. V. Radkevič, Second Order Equations with Nonnegative Characteristic Form, Plenum, New York, 1973 | MR | MR

[32] E. N. Pelinovskii, Hydrodynamics of Tsunami Waves, Inst. Prikl. Fiz., Nizhni Novgorod, 1996 (in Russian)

[33] T. Ratiu, T. A. Filatova, and A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl

[34] Ratiu T.S., Suleimanova A.A., Shafarevich A.I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl

[35] S. Yu. Slavyanov, Asymptotics of Solutions of the One-Dimensional Schrödinger Equation, Leningrad. Gos. Univ., Leningrad, 1990 | DOI | MR | MR | Zbl

[36] Asymptotic Solutions of the One-Dimensional Schrödinger Equation, Transl. Math. Monogr., 151, Am. Math. Soc., Providence, RI, 1996 ; Solimeno S., Krozinyani B., Di Porto P., Difraktsiya i volnovodnoe rasprostranenie opticheskogo izlucheniya, Mir, M., 1989 | DOI | MR | MR | Zbl

[37] S. Solimeno, B. Crosignani, and P. DiPorto, Guiding, Diffraction, and Confinement of Optical Radiation, Academic, Orlando, 1986

[38] Stoker J.J., Water waves: The mathematical theory with applications, Interscience, New York, 1957 | MR | Zbl

[39] Synolakis C.E., “On the roots of $f(z)=J_0(z)-iJ_1(z)$”, Q. Appl. Math., 46:1 (1988), 105–107 | DOI | MR | Zbl

[40] V. S. Vladimirov, Equations of Mathematical Physics, 4th ed., Nauka, Moscow, 1981 | MR | MR

[41] Mir, Moscow, 1984 | MR | MR

[42] Vukašinac T., Zhevandrov P., “Geometric asymptotics for a degenerate hyperbolic equation”, Russ. J. Math. Phys., 9:3 (2002), 371–381 ; Vatson G.N., Teoriya besselevykh funktsii, Ch. 1, Izd-vo inostr. lit., M., 1949 | MR | Zbl

[43] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1944 | MR | Zbl

[44] Zhevandrov P., “Edge waves on a gently sloping beach: uniform asymptotics”, J. Fluid Mech., 233 (1991), 483–493 | DOI | MR | Zbl