On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 56-74
Voir la notice de l'article provenant de la source Math-Net.Ru
The behavior of solutions of a second-order elliptic equation near a distinguished piece of the boundary is studied. On the remaining part of the boundary, the solutions are assumed to satisfy the homogeneous Dirichlet conditions. A necessary and sufficient condition is established for the existence of an $L_2$ boundary value on the distinguished part of the boundary. Under the conditions of this criterion, estimates for the nontangential maximal function of the solution hold, the solution belongs to the space of $(n-1)$-dimensionally continuous functions, and the boundary value is taken in a much stronger sense.
Mots-clés :
elliptic equation
Keywords: boundary value, Dirichlet problem.
Keywords: boundary value, Dirichlet problem.
@article{TM_2019_306_a5,
author = {A. K. Gushchin},
title = {On the {Existence} of $L_2$ {Boundary} {Values} of {Solutions} to an {Elliptic} {Equation}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {56--74},
publisher = {mathdoc},
volume = {306},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a5/}
}
TY - JOUR AU - A. K. Gushchin TI - On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 56 EP - 74 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a5/ LA - ru ID - TM_2019_306_a5 ER -
A. K. Gushchin. On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 56-74. http://geodesic.mathdoc.fr/item/TM_2019_306_a5/