On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 56-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of solutions of a second-order elliptic equation near a distinguished piece of the boundary is studied. On the remaining part of the boundary, the solutions are assumed to satisfy the homogeneous Dirichlet conditions. A necessary and sufficient condition is established for the existence of an $L_2$ boundary value on the distinguished part of the boundary. Under the conditions of this criterion, estimates for the nontangential maximal function of the solution hold, the solution belongs to the space of $(n-1)$-dimensionally continuous functions, and the boundary value is taken in a much stronger sense.
Mots-clés : elliptic equation
Keywords: boundary value, Dirichlet problem.
@article{TM_2019_306_a5,
     author = {A. K. Gushchin},
     title = {On the {Existence} of $L_2$ {Boundary} {Values} of {Solutions} to an {Elliptic} {Equation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {56--74},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a5/}
}
TY  - JOUR
AU  - A. K. Gushchin
TI  - On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 56
EP  - 74
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a5/
LA  - ru
ID  - TM_2019_306_a5
ER  - 
%0 Journal Article
%A A. K. Gushchin
%T On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 56-74
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a5/
%G ru
%F TM_2019_306_a5
A. K. Gushchin. On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 56-74. http://geodesic.mathdoc.fr/item/TM_2019_306_a5/

[1] È. R. Andriyanova and F. Kh. Mukminov, “Existence and qualitative properties of a solution of the first mixed problem for a parabolic equation with non-power-law double nonlinearity”, Sb. Math., 207:1 (2016), 1–40 | DOI | DOI | MR | Zbl

[2] O. I. Bogoyavlenskii, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, and V. P. Mikhailov, “Boundary value problems of mathematical physics”, Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | MR

[3] Carleson L., “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80 (1958), 921–930 | DOI | MR | Zbl

[4] Carleson L., “Interpolations by bounded analytic functions and the corona problem”, Ann. Math. Ser. 2, 76 (1962), 547–559 | DOI | MR | Zbl

[5] De Giorgi E., “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. Ser. 3, 3 (1957), 25–43 | MR | Zbl

[6] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl

[7] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theor. Math. Phys., 180:2 (2014), 917–931 | DOI | DOI | MR | Zbl

[8] Dumanyan V.Zh., “On solvability of the Dirichlet problem with the boundary function in $L_2$ for a second-order elliptic equation”, J. Contemp. Math. Anal., 50:4 (2015), 153–166 | DOI | MR | Zbl

[9] Fatou P., “Séries trigonométriques et séries de Taylor”, Acta math., 30 (1906), 335–400 | DOI | MR | Zbl

[10] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR, Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[11] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Sib. Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl

[12] A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theor. Math. Phys., 157:3 (2008), 1655–1670 | DOI | DOI | MR | Zbl

[13] A. K. Gushchin, “Solvability of the Dirichlet problem for a second-order elliptic equation with a boundary function from $L_p$”, Dokl. Math., 83:2 (2011), 219–221 | DOI | MR | Zbl

[14] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | MR | Zbl

[15] A. K. Guschin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theor. Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | MR | Zbl

[16] A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439 | DOI | DOI | MR | Zbl

[17] A. K. Gushchin, “V. A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151 | DOI | DOI | MR | Zbl

[18] A. K. Gushchin, “$L_p$-estimates for the nontangential maximal function of the solution to a second-order elliptic equation”, Sb. Math., 207:10 (2016), 1384–1409 | DOI | DOI | MR | Zbl

[19] A. K. Gushchin, “The Luzin area integral and the nontangential maximal function for solutions to a second-order elliptic equation”, Sb. Math., 209:6 (2018), 823–839 | DOI | DOI | MR | Zbl

[20] A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64 | DOI | MR | Zbl

[21] A. K. Gushchin and V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR, Sb., 36:1 (1980), 1–19 | DOI | DOI | MR | Zbl

[22] A. K. Gushchin and V. P. Mikhailov, “On boundary values of solutions of elliptic equations”, Generalized Functions and Their Applications in Mathematical Physics, Proc. Int. Conf. (Moscow, Nov. 24–28, 1980), Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1981, 189–205

[23] A. K. Gushchin and V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR, Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[24] A. K. Gushchin and V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russ. Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | MR

[25] Hörmander L., “$L^p$ estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl

[26] M. O. Katanaev, “Lorentz invariant vacuum solutions in general relativity”, Proc. Steklov Inst. Math., 290 (2015), 138–142 | DOI | DOI | MR | Zbl

[27] M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe”, Phys. Usp., 59:7 (2016), 689–700 | DOI | DOI

[28] M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections”, Theor. Math. Phys., 191:2 (2017), 661–668 | DOI | DOI | MR | MR | Zbl

[29] V. A. Kondrat'ev, I. Kopachek, and O. A. Oleinik, “On the best Hölder exponents for generalized solutions of the Dirichlet problem for a second order elliptic equation”, Math. USSR, Sb., 59:1 (1988), 113–127 | DOI | MR | Zbl

[30] L. M. Kozhevnikova and A. A. Khadzhi, “Existence of solutions of anisotropic elliptic equations with nonpolynomial nonlinearities in unbounded domains”, Sb. Math., 206:8 (2015), 1123–1149 | DOI | DOI | MR | Zbl

[31] Littlewood J.E., Paley R.E.A.C., “Theorems on Fourier series and power series”, J. London Math. Soc., 6 (1931), 230–233 | DOI | MR

[32] Littlewood J.E., Paley R.E.A.C., “Theorems on Fourier series and power series. II”, Proc. London Math. Soc. Ser. 2, 42 (1936), 52–89 | MR

[33] Littlewood J.E., Paley R.E.A.C., “Theorems on Fourier series and power series. III”, Proc. London Math. Soc. Ser. 2, 43 (1937), 105–126 | MR | Zbl

[34] Marcinkiewicz J., Zygmund A., “A theorem of Lusin”, Duke Math. J., 4 (1938), 473–485 | DOI | MR

[35] V. G. Maz'ja, “On a degenerating problem with directional derivative”, Math. USSR, Sb., 16:3 (1972), 429–469 | DOI | Zbl

[36] V. P. Mikhailov, “On boundary properties of solutions of elliptic equations”, Sov. Math., Dokl., 17 (1976), 274–277 | MR

[37] V. P. Mikhailov, “On the boundary values of solutions of elliptic equations in domains with a smooth boundary”, Math. USSR, Sb., 30:2 (1976), 143–166 | DOI | MR

[38] V. P. Mikhailov, “Dirichlet's problem for a second-order elliptic equation”, Diff. Eqns., 12:10 (1977), 1320–1329 | MR

[39] V. P. Mikhailov, “Boundary properties of solutions of elliptic equations”, Mat. Zametki, 27:1 (1980), 137–145 | MR

[40] Yu. A. Mikhailov, “Boundary values in $L_p$, $p>1$, of solutions of second-order linear elliptic equations”, Diff. Eqns., 19:2 (1983), 243–258 | MR

[41] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl

[42] I. M. Petrushko, “On boundary values of solutions of elliptic equations in domains with Lyapunov boundary”, Math. USSR, Sb., 47:1 (1984), 43–72 | DOI | MR | MR | Zbl | Zbl

[43] I. M. Petrushko, “On boundary values in $\mathcal L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR, Sb., 48:2 (1984), 565–585 | DOI | MR | MR | Zbl | Zbl

[44] I. I. Privalov, Boundary Properties of Analytic Functions, Gostekhizdat, Moscow, 1950 (in Russian) | MR

[45] Riesz F., “Über die Randwerte einer analytischen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | MR | Zbl

[46] Ya. A. Roitberg, “On limiting values on surfaces, parallel to the boundary, of generalized solutions of elliptic equations”, Sov. Math., Dokl., 19 (1978), 229–233 | MR | Zbl

[47] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[48] V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations”, Theor. Math. Phys., 185:2 (2015), 1557–1581 | DOI | DOI | MR | MR | Zbl

[49] V. V. Zharinov, “Bäcklund transformations”, Theor. Math. Phys., 189:3 (2016), 1681–1692 | DOI | DOI | MR | MR | Zbl

[50] V. V. Zharinov, “Lie–Poisson structures over differential algebras”, Theor. Math. Phys., 192:3 (2017), 1337–1349 | DOI | DOI | MR | MR | Zbl

[51] A. Zygmund, Trigonometric Series, v. 2, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl