On Maxwell's Equations with a Magnetic Monopole on Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 52-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a generalization of Maxwell's equations on a pseudo-Riemannian manifold $M$ of arbitrary dimension in the presence of electric and magnetic charges and prove that if the cohomology groups $H^2(M)$ and $H^3(M)$ are trivial, then solving these equations reduces to solving the d'Alembert–Hodge equation.
@article{TM_2019_306_a4,
     author = {I. V. Volovich and V. V. Kozlov},
     title = {On {Maxwell's} {Equations} with a {Magnetic} {Monopole} on {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--55},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a4/}
}
TY  - JOUR
AU  - I. V. Volovich
AU  - V. V. Kozlov
TI  - On Maxwell's Equations with a Magnetic Monopole on Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 52
EP  - 55
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a4/
LA  - ru
ID  - TM_2019_306_a4
ER  - 
%0 Journal Article
%A I. V. Volovich
%A V. V. Kozlov
%T On Maxwell's Equations with a Magnetic Monopole on Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 52-55
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a4/
%G ru
%F TM_2019_306_a4
I. V. Volovich; V. V. Kozlov. On Maxwell's Equations with a Magnetic Monopole on Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 52-55. http://geodesic.mathdoc.fr/item/TM_2019_306_a4/

[1] Darboux G., “Problème de mécaniqie”, Bull. sci. math. astron. Sér. 2, 2:1 (1878), 433–436

[2] Poincaré H., “Remarques sur une expérience de M. Birkeland”, C. r. Acad. sci., 123 (1896), 530–533

[3] Dirac P.A.M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. London A, 133 (1931), 60–72 | DOI

[4] McDonald K.T., Birkeland, Darboux and Poincaré: Motion of an electric charge in the field of a magnetic pole, E-print, Princeton Univ., Princeton, NJ, 2015 http://www.physics.princeton.edu/~mcdonald/examples/birkeland.pdf