On Maxwell's Equations with a Magnetic Monopole on Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 52-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a generalization of Maxwell's equations on a pseudo-Riemannian manifold $M$ of arbitrary dimension in the presence of electric and magnetic charges and prove that if the cohomology groups $H^2(M)$ and $H^3(M)$ are trivial, then solving these equations reduces to solving the d'Alembert–Hodge equation.
@article{TM_2019_306_a4,
author = {I. V. Volovich and V. V. Kozlov},
title = {On {Maxwell's} {Equations} with a {Magnetic} {Monopole} on {Manifolds}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {52--55},
publisher = {mathdoc},
volume = {306},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a4/}
}
TY - JOUR AU - I. V. Volovich AU - V. V. Kozlov TI - On Maxwell's Equations with a Magnetic Monopole on Manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 52 EP - 55 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a4/ LA - ru ID - TM_2019_306_a4 ER -
I. V. Volovich; V. V. Kozlov. On Maxwell's Equations with a Magnetic Monopole on Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 52-55. http://geodesic.mathdoc.fr/item/TM_2019_306_a4/