Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_306_a22, author = {Xiangyu Zhou}, title = {Roles of {Plurisubharmonic} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {304--312}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a22/} }
Xiangyu Zhou. Roles of Plurisubharmonic Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 304-312. http://geodesic.mathdoc.fr/item/TM_2019_306_a22/
[1] Berndtsson B., “The openness conjecture and complex Brunn–Minkowski inequalities”, Complex geometry and dynamics: The Abel Symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 29–44 | DOI | MR | Zbl
[2] Berndtsson B., Păun M., “Bergman kernels and the pseudoeffectivity of relative canonical bundles”, Duke Math. J., 145:2 (2008), 341–378 | DOI | MR | Zbl
[3] Blel M., Mimouni S.K., “Singularité et intégrabilité des fonctions plurisousharmoniques”, Ann. Inst. Fourier, 55:2 (2005), 319–351 | DOI | MR | Zbl
[4] Boucksom S., Favre C., Jonsson M., “Valuations and plurisubharmonic singularities”, Publ. Res. Inst. Math. Sci., 44:2 (2008), 449–494 | DOI | MR | Zbl
[5] Demailly J.-P., “Kähler manifolds and transcendental techniques in algebraic geometry”, Proc. Int. Congr. Math. 2006, v. I, Plenary lectures and ceremonies, Eur. Math. Soc., Zürich, 2007, 153–186 | MR | Zbl
[6] Demailly J.-P., Analytic methods in algebraic geometry, Surv. Mod. Math., 1, Int. Press, Somerville, MA, 2012 | MR | Zbl
[7] Demailly J.-P., Complex analytic and differential geometry, Univ. Grenoble I, Inst. Fourier, Grenoble, 2012 https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
[8] Demailly J-P., Kollár J., “Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds”, Ann. sci. Éc. norm. supér. Sér. 4, 34:4 (2001), 525–556 | MR | Zbl
[9] Favre C., Jonsson M., “Valuative analysis of planar plurisubharmonic functions”, Invent. math., 162:2 (2005), 271–311 | DOI | MR | Zbl
[10] Favre C., Jonsson M., “Valuations and multiplier ideals”, J. Amer. Math. Soc., 18:3 (2005), 655–684 | DOI | MR | Zbl
[11] Grauert H., “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. Math. Ser. 2, 68 (1958), 460–472 | DOI | MR | Zbl
[12] Grauert H., Remmert R., Theory of Stein spaces, Grundl. Math. Wiss., 236, Springer, Berlin, 1979 | MR | Zbl
[13] Grauert H., Remmert R., Coherent analytic sheaves, Grundl. Math. Wiss., 265, Springer, Berlin, 1984 | MR | Zbl
[14] Guan Q., Zhou X., “Optimal constant problem in the $L^2$ extension theorem”, C. r. Math. Acad. sci. Paris, 350:15–16 (2012), 753–756 | DOI | MR | Zbl
[15] Guan Q., Zhou X., “Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa”, Sci. China. Math., 58:1 (2015), 35–59 | DOI | MR | Zbl
[16] Guan Q., Zhou X., “A solution of an $L^2$ extension problem with an optimal estimate and applications”, Ann. Math. Ser. 2, 181:3 (2015), 1139–1208 | DOI | MR | Zbl
[17] Guan Q., Zhou X., “A proof of Demailly's strong openness conjecture”, Ann. Math. Ser. 2, 182:2 (2015), 605–616 | DOI | MR | Zbl
[18] Guan Q., Zhou X., “Effectiveness of Demailly's strong openness conjecture and related problems”, Invent. math., 202:2 (2015), 635–676 | DOI | MR | Zbl
[19] Guan Q., Zhou X., “Characterization of multiplier ideal sheaves with weights of Lelong number one”, Adv. Math., 285 (2015), 1688–1705 | DOI | MR | Zbl
[20] Guan Q.A., Zhou X.Y., “Strong openness of multiplier ideal sheaves and optimal $L^2$ extension”, Sci. China. Math., 60:6 (2017), 967–976 | DOI | MR | Zbl
[21] Hacon C., Popa M., Schnell C., “Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun”, Local and global methods in algebraic geometry, Contemp. Math., 712, Amer. Math. Soc., Providence, RI, 2018, 143–195 | DOI | MR | Zbl
[22] Hörmander L., An introduction to complex analysis in several variables, North-Holland Math. Libr., 7, 3rd ed., North-Holland, Amsterdam, 1990 | MR | Zbl
[23] Jonsson M., Mustaţă M., “An algebraic approach to the openness conjecture of Demailly and Kollár”, J. Inst. Math. Jussieu, 13:1 (2014), 119–144 | DOI | MR | Zbl
[24] Jonsson M., Mustaţă M., “Valuations and asymptotic invariants for sequences of ideals”, Ann. Inst. Fourier, 62:6 (2012), 2145–2209 | DOI | MR | Zbl
[25] Kiselman C.O., “Plurisubharmonic functions and potential theory in several complex variables”, Development of mathematics 1950–2000, Birkhäuser, Basel, 2000, 655–714 | DOI | MR | Zbl
[26] Meng X., Zhou X., “Pseudo-effective line bundles over holomorphically convex manifolds”, J. Algebr. Geom., 28:1 (2019), 169–200 | DOI | MR | Zbl
[27] Ohsawa T., “Finiteness theorems on weakly 1-complete manifolds”, Publ. Res. Inst. Math. Sci., 15 (1979), 853–870 | DOI | MR | Zbl
[28] Ohsawa T., $L^2$ approaches in several complex variables: Development of Oka–Cartan theory by $L^2$ estimates for the $\bar \partial $ operator, Springer Monogr. Math., Springer, Tokyo, 2015 | DOI | MR | Zbl
[29] Păun M., Takayama S., “Positivity of twisted relative pluricanonical bundles and their direct images”, J. Algebr. Geom., 27:2 (2018), 211–272 | MR
[30] Peternell T., “On strongly pseudo-convex Kähler manifolds”, Invent. math., 70 (1982), 157–168 | DOI | MR | Zbl
[31] Peternell T., “Der Kodairasche Verschwindungssatz auf streng pseudokonvexen Räumen. I”, Math. Ann., 270 (1985), 87–96 | DOI | MR | Zbl
[32] Phong D.H., Sturm J., “Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions”, Ann. Math. Ser. 2, 152:1 (2000), 277–329 | DOI | MR | Zbl
[33] Prill D., “The divisor class groups of some rings of holomorphic functions”, Math. Z., 121 (1971), 58–80 | DOI | MR | Zbl
[34] A. G. Sergeev and X. Zhou, “Invariant domains of holomorphy: Twenty years later”, Proc. Steklov Inst. Math., 285 (2014), 241–250 | DOI | DOI | MR | Zbl
[35] Siu Y.-T., “The Fujita conjecture and the extension theorem of Ohsawa–Takegoshi”, Geometric complex analysis, Proc. 3rd Int. Res. Inst. (Math. Soc. Japan, Hayama, 1995), World Scientific, Singapore, 1996, 577–592 | MR | Zbl
[36] Siu Y.-T., “Invariance of plurigenera”, Invent. math., 134:3 (1998), 661–673 | DOI | MR | Zbl
[37] Siu Y.-T., “Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type”, Complex geometry: Collection of papers dedicated to Hans Grauert, Springer, Berlin, 2002, 223–277 | MR | Zbl
[38] Siu Y.-T., “Some recent transcendental techniques in algebraic and complex geometry”, Proc. Int. Congr. Math. 2002, v. I, Plenary lectures and ceremonies, High. Educ. Press, Beijing, 2002, 439–448 | MR | Zbl
[39] Siu Y.-T., “Invariance of plurigenera and torsion-freeness of direct image sheaves of pluricanonical bundles”, Finite or infinite dimensional complex analysis and applications, Adv. Complex Anal. Appl., 2, Kluwer, Boston, MA, 2004, 45–83 | MR | Zbl
[40] Siu Y.-T., “Multiplier ideal sheaves in complex and algebraic geometry”, Sci. China. Ser. A, 48 (Suppl.) (2005), 1–31 | DOI | MR | Zbl
[41] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, Nauka, Moscow, 1964 (in Russian) | MR
[42] X.-Y. Zhou, “A proof of the extended future tube conjecture”, Izv. Math., 62:1 (1998), 201–213 | DOI | DOI | MR | MR | Zbl
[43] Zhou X., “Some results related to group actions in several complex variables”, Proc. Int. Congr. Math. 2002, v. II, Invited lectures, High. Educ. Press, Beijing, 2002, 743–753 | MR | Zbl
[44] Zhou X., “A survey on $L^2$ extension problem”, Complex geometry and dynamics: The Abel Symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 291–309 | DOI | MR | Zbl
[45] Zhou X., Zhu L., “A generalized Siu's lemma”, Math. Res. Lett., 24:6 (2017), 1897–1913 | DOI | MR | Zbl
[46] Zhou X., Zhu L., “An optimal $L^2$ extension theorem on weakly pseudoconvex Kähler manifolds”, J. Diff. Geom., 110:1 (2018), 135–186 | DOI | MR | Zbl
[47] Zhou X., Zhu L., “Siu's lemma, optimal $L^2$ extension and applications to twisted pluricanonical sheaves”, Math. Ann., 2018 | DOI