Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_306_a21, author = {A. Kh. Khachatryan and Kh. A. Khachatryan}, title = {On the {Solvability} of {Some} {Nonlinear} {Integral} {Equations} in {Problems} of {Epidemic} {Spread}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {287--303}, publisher = {mathdoc}, volume = {306}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a21/} }
TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan TI - On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 287 EP - 303 VL - 306 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_306_a21/ LA - ru ID - TM_2019_306_a21 ER -
%0 Journal Article %A A. Kh. Khachatryan %A Kh. A. Khachatryan %T On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 287-303 %V 306 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_306_a21/ %G ru %F TM_2019_306_a21
A. Kh. Khachatryan; Kh. A. Khachatryan. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 287-303. http://geodesic.mathdoc.fr/item/TM_2019_306_a21/
[1] S. M. Andriyan, A. K. Kroyan, and Kh. A. Khachatryan, “On solvability of a class of nonlinear integral equations in $p$-adic string theory”, Ufimsk. Mat. Zh., 10:4 (2018), 12–23 | DOI | MR
[2] Diekmann O., “Limiting behaviour in an epidemic model”, Nonlinear Anal. Theory Methods Appl., 1 (1977), 459–470 | DOI | MR | Zbl
[3] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6 (1978), 109–130 | DOI | MR | Zbl
[4] Diekmann O., “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Diff. Eqns., 33:1 (1979), 58–73 | DOI | MR | Zbl
[5] G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus, v. 2, Nauka, Moscow, 1966 (in Russian)
[6] G. G. Gevorkyan and N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., Armen. Acad. Sci., 32:1 (1997), 2–16 | MR | Zbl
[7] Kendall D.G., “Discussion of “Measles periodicity and community size” by M.S. Bartlett”, J. R. Stat. Soc. A, 120 (1957), 64–67
[8] Kendall D.G., “Mathematical models of the spread of infection”, Mathematics and computer science in biology and medicine, Med. Res. Counc., HMSO, London, 1965, 213–225
[9] Kermack W.O., McKendrick A.G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. London A, 115 (1927), 700–721 | DOI | Zbl
[10] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | DOI | MR | Zbl
[11] Kh. A. Khachatryan, “On the solvability of a boundary value problem in $p$-adic string theory”, Trans. Moscow Math. Soc., 2018 (2018), 101–115 | DOI | MR | MR | Zbl
[12] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1981 | MR | Zbl | Zbl
[13] Dover, Mineola, NY, 1999 | MR | Zbl | Zbl
[14] V. S. Vladimirov, “Solutions of $p$-adic string equations”, Theor. Math. Phys., 167:2 (2011), 539–546 | DOI | DOI | MR | Zbl
[15] V. S. Vladimirov, “Mathematical questions of the theory of nonlinear pseudodifferential equations of $p$-adic strings”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2011, no. 1, 34–41 | DOI | MR
[16] V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theor. Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl