On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 287-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some classes of convolution-type nonlinear integral equations that are directly related to the problems of geographic spread of epidemic diseases. Under various constraints on the nonlinearity and the kernel of the equation, we prove existence theorems for monotonic and bounded solutions. We also present specific examples of application of these equations.
Keywords: epidemic, iterations, monotonicity, nonlinearity, bounded solution.
@article{TM_2019_306_a21,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {On the {Solvability} of {Some} {Nonlinear} {Integral} {Equations} in {Problems} of {Epidemic} {Spread}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {287--303},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a21/}
}
TY  - JOUR
AU  - A. Kh. Khachatryan
AU  - Kh. A. Khachatryan
TI  - On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 287
EP  - 303
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a21/
LA  - ru
ID  - TM_2019_306_a21
ER  - 
%0 Journal Article
%A A. Kh. Khachatryan
%A Kh. A. Khachatryan
%T On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 287-303
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a21/
%G ru
%F TM_2019_306_a21
A. Kh. Khachatryan; Kh. A. Khachatryan. On the Solvability of Some Nonlinear Integral Equations in Problems of Epidemic Spread. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 287-303. http://geodesic.mathdoc.fr/item/TM_2019_306_a21/

[1] S. M. Andriyan, A. K. Kroyan, and Kh. A. Khachatryan, “On solvability of a class of nonlinear integral equations in $p$-adic string theory”, Ufimsk. Mat. Zh., 10:4 (2018), 12–23 | DOI | MR

[2] Diekmann O., “Limiting behaviour in an epidemic model”, Nonlinear Anal. Theory Methods Appl., 1 (1977), 459–470 | DOI | MR | Zbl

[3] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6 (1978), 109–130 | DOI | MR | Zbl

[4] Diekmann O., “Run for your life. A note on the asymptotic speed of propagation of an epidemic”, J. Diff. Eqns., 33:1 (1979), 58–73 | DOI | MR | Zbl

[5] G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus, v. 2, Nauka, Moscow, 1966 (in Russian)

[6] G. G. Gevorkyan and N. B. Engibaryan, “New theorems for the renewal integral equation”, J. Contemp. Math. Anal., Armen. Acad. Sci., 32:1 (1997), 2–16 | MR | Zbl

[7] Kendall D.G., “Discussion of “Measles periodicity and community size” by M.S. Bartlett”, J. R. Stat. Soc. A, 120 (1957), 64–67

[8] Kendall D.G., “Mathematical models of the spread of infection”, Mathematics and computer science in biology and medicine, Med. Res. Counc., HMSO, London, 1965, 213–225

[9] Kermack W.O., McKendrick A.G., “A contribution to the mathematical theory of epidemics”, Proc. R. Soc. London A, 115 (1927), 700–721 | DOI | Zbl

[10] Kh. A. Khachatryan, “On the solubility of certain classes of non-linear integral equations in $p$-adic string theory”, Izv. Math., 82:2 (2018), 407–427 | DOI | DOI | MR | Zbl

[11] Kh. A. Khachatryan, “On the solvability of a boundary value problem in $p$-adic string theory”, Trans. Moscow Math. Soc., 2018 (2018), 101–115 | DOI | MR | MR | Zbl

[12] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1981 | MR | Zbl | Zbl

[13] Dover, Mineola, NY, 1999 | MR | Zbl | Zbl

[14] V. S. Vladimirov, “Solutions of $p$-adic string equations”, Theor. Math. Phys., 167:2 (2011), 539–546 | DOI | DOI | MR | Zbl

[15] V. S. Vladimirov, “Mathematical questions of the theory of nonlinear pseudodifferential equations of $p$-adic strings”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2011, no. 1, 34–41 | DOI | MR

[16] V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theor. Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl