Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 235-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the generalized Gelfand–Shilov spaces $S_{b_n}^{a_k}$ are studied from the viewpoint of deformation quantization. We specify the conditions on the defining sequences $(a_k)$ and $(b_n)$ under which $S_{b_n}^{a_k}$ is an algebra with respect to the twisted convolution and, as a consequence, its Fourier transformed space $S^{b_n}_{a_k}$ is an algebra with respect to the Moyal star product. We also consider a general family of translation-invariant star products. We define and characterize the corresponding algebras of multipliers and prove the basic inclusion relations between these algebras and the duals of the spaces of ordinary pointwise and convolution multipliers. Analogous relations are proved for the projective counterpart of the Gelfand–Shilov spaces. A key role in our analysis is played by a theorem characterizing those spaces of type $S$ for which the function $\exp (iQ(x))$ is a pointwise multiplier for any real quadratic form $Q$.
@article{TM_2019_306_a18,
     author = {M. A. Soloviev},
     title = {Spaces of {Type} $S$ as {Topological} {Algebras} under {Twisted} {Convolution} and {Star} {Product}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {235--257},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a18/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 235
EP  - 257
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a18/
LA  - ru
ID  - TM_2019_306_a18
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 235-257
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a18/
%G ru
%F TM_2019_306_a18
M. A. Soloviev. Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 235-257. http://geodesic.mathdoc.fr/item/TM_2019_306_a18/

[1] Álvarez-Gaumé L., Vázquez-Mozo M.A., “General properties of non-commutative field theories”, Nucl. Phys. B, 668:1–2 (2003), 293–321 | DOI | MR | Zbl

[2] Antonets M.A., “The classical limit for Weyl quantization”, Lett. Math. Phys., 2:3 (1978), 241–245 | DOI | MR

[3] Athanassoulis A.G., Mauser N.J., Paul T., “Coarse-scale representations and smoothed Wigner transforms”, J. math. pures appl., 91:3 (2009), 296–338 | DOI | MR | Zbl

[4] Beiser S., Römer H., Waldmann S., “Convergence of the Wick star product”, Commun. Math. Phys., 272:1 (2007), 25–52 | DOI | MR | Zbl

[5] F. A. Berezin and M. A. Shubin, The Schrödinger Equation, Mosk. Gos. Univ., Moscow, 1983 | MR | Zbl | Zbl

[6] Kluwer, Dordrecht, 1991 | MR | Zbl | Zbl

[7] Blaszak M., Domański Z., “Phase space quantum mechanics”, Ann. Phys., 327:2 (2012), 167–211 | DOI | MR | Zbl

[8] Brüning E., Nagamachi S., “Relativistic quantum field theory with a fundamental length”, J. Math. Phys., 45:6 (2004), 2199–2231 | DOI | MR | Zbl

[9] Cappiello M., Toft J., “Pseudo-differential operators in a Gelfand–Shilov setting”, Math. Nachr., 290:5–6 (2017), 738–755 | DOI | MR | Zbl

[10] Chaichian M., Mnatsakanova M.N., Tureanu A., Vernov Yu., “Test functions space in noncommutative quantum field theory”, J. High Energy Phys., 2008:09 (2008), 125 | DOI | MR | Zbl

[11] Doplicher S., Fredenhagen K., Roberts J.E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys., 172:1 (1995), 187–220 | DOI | MR | Zbl

[12] Fainberg V.Ya., Soloviev M.A., “Causality, localizability, and holomorphically convex hulls”, Commun. Math. Phys., 57:2 (1977), 149–159 | DOI | MR | Zbl

[13] Folland G.B., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR | Zbl

[14] Gayral V., Gracia-Bondía J.M., Iochum B., Schücker T., Várilly J.C., “Moyal planes are spectral triples”, Commun. Math. Phys., 246:3 (2004), 569–623 | DOI | MR | Zbl

[15] I. M. Gelfand and G. E. Shilov, Spaces of Fundamental and Generalized Functions, Fizmatgiz, Moscow, 1958 | MR

[16] Generalized Functions, 2, Academic, New York, 1968 | MR

[17] De Gosson M., Symplectic geometry and quantum mechanics, Birkhäuser, Basel, 2006 | MR | Zbl

[18] Gracia-Bondía J.M., Várilly J.C., “Algebras of distributions suitable for phase-space quantum mechanics. I”, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR | Zbl

[19] Grothendieck A., Produits tensoriels topologiques et espaces nucléaires, Mem. AMS, 16, Amer. Math. Soc., Providence, RI, 1955 | MR

[20] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Springer, Berlin, 1983 | MR

[21] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. III, Pseudo-differential Operators, Springer, Berlin, 1985 | MR

[22] Komatsu H., “Projective and injective limits of weakly compact sequences of locally convex spaces”, J. Math Soc. Japan, 19:3 (1967), 366–383 | DOI | MR | Zbl

[23] Komatsu H., “Ultradistributions. I: Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 20:1 (1973), 25–105 | MR | Zbl

[24] Köthe G., Topological vector spaces. II, Springer, New York, 1979 | MR | Zbl

[25] Maillard J.M., “On the twisted convolution product and the Weyl transformation of tempered distributions”, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR | Zbl

[26] Mandelbrojt S., “Sur un problème de Gelfand et Šilov”, Ann. sci. Éc. norm. supér. Sér. 3, 77:2 (1960), 145–166 | MR | Zbl

[27] Meise R., Vogt D., Introduction to functional analysis, Clarendon, Oxford, 1997 | MR | Zbl

[28] B. S. Mitjagin, “Nuclearity and other properties of spaces of type $S$”, Am. Math. Soc. Transl., Ser. 2,, 93 (1970), 45–59 | Zbl

[29] Moyal J.E., “Quantum mechanics as a statistical theory”, Proc. Camb. Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[30] G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic, Boston, 1990 | MR

[31] Nagamachi S., Mugibayashi N., “Hyperfunction quantum field theory”, Commun. Math. Phys., 46:2 (1976), 119–134 | DOI | MR | Zbl

[32] Nagamachi S., Mugibayashi N., “Hyperfunction quantum field theory. II: Euclidean Green's functions”, Commun. Math. Phys., 49:3 (1976), 257–275 | DOI | MR | Zbl

[33] Von Neumann J., “Die Eindeutigkeit der Schrödingerschen Operatoren”, Math. Ann., 104 (1931), 570–578 | DOI | MR | Zbl

[34] V. P. Palamodov, “Fourier transforms of infinitely differentiable functions of rapid growth”, Tr. Mosk. Mat. Obshch., 11 (1962), 309–350 | MR | Zbl

[35] Pilipović S., Prangoski B., “Anti-Wick and Weyl quantization on ultradistribution spaces”, J. math. pures appl., 103:2 (2015), 472–503 | DOI | MR | Zbl

[36] Prangoski B., “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions”, J. Pseudo-Diff. Oper. Appl., 4:4 (2013), 495–549 | DOI | MR | Zbl

[37] Quantum mechanics in phase space: An overview with selected papers, ed. by C.K. Zachos, D.B. Fairlie, T.L. Curtright, World Scientific, Hackensack, NJ, 2005 | MR | Zbl

[38] H. H. Schaefer, Topological Vector Spaces, MacMillan, New York, 1966 | MR | Zbl

[39] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:09 (1999), 032 | DOI | MR

[40] G. E. Shilov, “On a problem of quasianalyticity”, Dokl. Akad. Nauk SSSR, 102:5 (1955), 893–895 | MR | Zbl

[41] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer Ser. Sov. Math., Springer, Berlin, 1987 | DOI | MR | Zbl

[42] Smirnov A.G., “On topological tensor products of functional Fréchet and DF spaces”, Integral Transforms Spec. Funct., 20:3–4 (2009), 309–318 | DOI | MR | Zbl

[43] M. A. Solov'ev, “On the Fourier–Laplace transformation of generalized functions”, Theor. Math. Phys., 15:1 (1973), 317–328 | DOI | DOI | MR | Zbl

[44] M. A. Solov'ev, “Spacelike asymptotic behavior of vacuum expectation values in nonlocal field theory”, Theor. Math. Phys., 52:3 (1982), 854–862 | DOI | MR | MR

[45] Soloviev M.A., “An extension of distribution theory and of the Paley–Wiener–Schwartz theorem related to quantum gauge theory”, Commun. Math. Phys., 184:3 (1997), 579–596 | DOI | MR | Zbl

[46] M. A. Soloviev, “Axiomatic formulations of nonlocal and noncommutative field theories”, Theor. Math. Phys., 147:2 (2006), 660–669 | DOI | DOI | MR | Zbl

[47] M. A. Soloviev, “Star product algebras of test functions”, Theor. Math. Phys., 153:1 (2007), 1351–1363 | DOI | DOI | MR | Zbl

[48] Soloviev M.A., “Noncommutativity and $\theta $-locality”, J. Phys. A: Math. Theor., 40:48 (2007), 14593–14604 | DOI | MR | Zbl

[49] Soloviev M.A., “Quantum field theory with a fundamental length: A general mathematical framework”, J. Math. Phys., 50:12 (2009), 123519 | DOI | MR | Zbl

[50] Soloviev M.A., “Reconstruction in quantum field theory with a fundamental length”, J. Math. Phys., 51:9 (2010), 093520 | DOI | MR | Zbl

[51] Soloviev M.A., “Moyal multiplier algebras of the test function spaces of type $S$”, J. Math. Phys., 52:6 (2011), 063502 | DOI | MR | Zbl

[52] M. A. Soloviev, “Twisted convolution and Moyal star product of generalized functions”, Theor. Math. Phys., 172:1 (2012), 885–900 | DOI | DOI | MR | Zbl

[53] M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras”, Theor. Math. Phys., 173:1 (2012), 1359–1376 | DOI | DOI | MR | Zbl

[54] Soloviev M.A., “Algebras with convergent star products and their representations in Hilbert spaces”, J. Math. Phys., 54:7 (2013), 073517 | DOI | MR | Zbl

[55] M. A. Soloviev, “Star products on symplectic vector spaces: Convergence, representations, and extensions”, Theor. Math. Phys., 181:3 (2014), 1612–1637 | DOI | DOI | MR | Zbl

[56] Soloviev M.A., “Integral representations of the star product corresponding to the $s$-ordering of the creation and annihilation operators”, Phys. scr., 90:7 (2015), 074008 | DOI

[57] R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, W. A. Benjamin, New York, 1964 | MR | Zbl

[58] Takahashi K., “Distribution functions in classical and quantum mechanics”, Prog. Theor. Phys. Suppl., 98 (1989), 109–156 | DOI | MR

[59] Toft J., “Images of function and distribution spaces under the Bargmann transform”, J. Pseudo-Diff. Oper. Appl., 8:1 (2017), 83–139 | DOI | MR | Zbl

[60] Várilly J.C., Gracia-Bondía J.M., “Algebras of distributions suitable for phase-space quantum mechanics. II: Topologies on the Moyal algebra”, J. Math. Phys., 29:4 (1988), 880–887 | DOI | MR | Zbl

[61] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, Nauka, Moscow, 1964 | MR

[62] M.I.T. Press, Cambridge, MA, 1966 | MR

[63] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Nauka, Moscow, 1976 | MR

[64] Mir, Moscow, 1979 | MR

[65] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1931 | MR

[66] Wong M.W., Weyl transforms, Springer, New York, 1998 | MR | Zbl

[67] V. V. Zharinov, “Compact families of locally convex topological vector spaces, Fréchet–Schwartz and dual Fréchet–Schwartz spaces”, Russ. Math. Surv., 34:4 (1979), 105–143 | DOI | MR | Zbl | Zbl