Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 192-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first initial–boundary value problem is considered for a class of anisotropic parabolic equations with variable nonlinearity exponents and a diffuse measure on the right-hand side in a cylindrical domain $(0,T)\times \Omega $. The domain $\Omega $ is bounded. The existence of a renormalized solution is proved.
Mots-clés : anisotropic parabolic equation, existence of a solution.
Keywords: diffuse measure, renormalized solution, variable nonlinearity exponents
@article{TM_2019_306_a15,
     author = {F. Kh. Mukminov},
     title = {Existence of a {Renormalized} {Solution} to an {Anisotropic} {Parabolic} {Problem} for an {Equation} with {Diffuse} {Measure}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--209},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a15/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
TI  - Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 192
EP  - 209
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a15/
LA  - ru
ID  - TM_2019_306_a15
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%T Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 192-209
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a15/
%G ru
%F TM_2019_306_a15
F. Kh. Mukminov. Existence of a Renormalized Solution to an Anisotropic Parabolic Problem for an Equation with Diffuse Measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 192-209. http://geodesic.mathdoc.fr/item/TM_2019_306_a15/

[1] Yu. A. Alkhutov and V. V. Zhikov, “Existence and uniqueness theorems for solutions of parabolic equations with a variable nonlinearity exponent”, Sb. Math., 205:3 (2014), 307–318 | DOI | DOI | MR | Zbl

[2] Alt H.W., Luckhaus S., “Quasilinear elliptic–parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR

[3] Amann H., Quittner P., “Semilinear parabolic equations involving measures and low regularity data”, Trans. Amer. Math. Soc., 356:3 (2004), 1045–1119 | DOI | MR | Zbl

[4] Ammar K., Wittbold P., “Existence of renormalized solutions of degenerate elliptic–parabolic problems”, Proc. R. Soc. Edinb. Sect. A: Math., 133:3 (2003), 477–496 | DOI | MR | Zbl

[5] Azroul E., Benboubker M.B., Rhoudaf M., “Entropy solution for some $p(x)$-quasilinear problem with right-hand side measure”, Afr. Diaspora J. Math., 13:2 (2012), 23–44 | MR | Zbl

[6] Azroul E., Redwane H., Rhoudaf M., “Existence of solutions for nonlinear parabolic systems via weak convergence of truncations”, Electron. J. Diff. Eqns., 2010 (2010), 68 | MR | Zbl

[7] Benboubker M.B., Ouaro S., Traore U., “Entropy solutions for nonlinear nonhomogeneous Neumann problems involving the generalized $p(x)$-Laplace operator and measure data”, J. Nonlinear Evol. Eqns. Appl., 2014:5 (2015), 53–76 | MR

[8] Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vazquez J.L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 22:2 (1995), 241–273 | MR | Zbl

[9] Bénilan P., Brezis H., “Nonlinear problems related to the Thomas–Fermi equation”, J. Evol. Eqns., 3:4 (2003), 673–770 | DOI | MR | Zbl

[10] Benilan P., Brezis H., Crandall M.G., “A semilinear equation in $L^1(\boldsymbol R^N)$”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 2:4 (1975), 523–555 | MR | Zbl

[11] Blanchard D., Murat F., “Renormalised solutions of nonlinear parabolic problems with $L^1$ data: Existence and uniqueness”, Proc. R. Soc. Edinb. Sect. A: Math., 127:6 (1997), 1137–1152 | DOI | MR | Zbl

[12] Blanchard D., Porretta A., “Nonlinear parabolic equations with natural growth terms and measure initial data”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 30:3–4 (2001), 583–622 | MR | Zbl

[13] Boccardo L., Gallouët T., “Nonlinear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87:1 (1989), 149–169 | DOI | MR | Zbl

[14] Boccardo L., Gallouët T., Orsina L., “Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data”, Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 13:5 (1996), 539–551 | DOI | MR | Zbl

[15] Bouajaja A., Redwane H., Marah A., “Existence and uniqueness of renormalized solutions to nonlinear parabolic equations with lower order term and diffuse measure data”, Mediterr. J. Math., 15:4 (2018), 178 | DOI | MR | Zbl

[16] Brezis H., Veron L., “Removable singularities for some nonlinear elliptic equations”, Arch. Ration. Mech. Anal., 75:1 (1980), 1–6 | DOI | MR | Zbl

[17] Carrillo J., Wittbold P., “Uniqueness of renormalized solutions of degenerate elliptic–parabolic problems”, J. Diff. Eqns., 156:1 (1999), 93–121 | DOI | MR | Zbl

[18] Dal Maso G., Murat F., Orsina L., Prignet A., “Definition and existence of renormalized solutions of elliptic equations with general measure data”, C. r. Acad. sci. Paris. Sér. 1: Math., 325:5 (1997), 481–486 | DOI | MR | Zbl

[19] Dal Maso G., Murat F., Orsina L., Prignet A., “Renormalized solutions of elliptic equations with general measure data”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 4, 28:4 (1999), 741–808 | MR | Zbl

[20] DiPerna R.J., Lions P.L., “On the Cauchy problem for Boltzmann equations: Global existence and weak stability”, Ann. Math. Ser. 2, 130:2 (1989), 321–366 | DOI | MR | Zbl

[21] Dong G., Fang X., “Existence results for some nonlinear elliptic equations with measure data in Orlicz–Sobolev spaces”, Bound. Value Probl., 2015 (2015), 18 | DOI | MR

[22] Droniou J., Gallouët T., “A uniqueness result for quasilinear elliptic equations with measures as data”, Rend. Mat. Appl. Ser. 7, 21 (2001), 57–86 | MR | Zbl

[23] Droniou J., Porretta A., Prignet A., “Parabolic capacity and soft measures for nonlinear equations”, Potential Anal., 19:2 (2003), 99–161 | DOI | MR | Zbl

[24] Dupaigne L., Ponce A.C., Porretta A., “Elliptic equations with vertical asymptotes in the nonlinear term”, J. anal. math., 98:1 (2006), 349–396 | DOI | MR | Zbl

[25] Guibé O., Mercaldo A., “Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data”, Trans. Amer. Math. Soc., 360:2 (2008), 643–669 | DOI | MR | Zbl

[26] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | MR | Zbl

[27] Hewitt E., Stromberg K., Real and abstract analysis: A modern treatment of the theory of functions of a real variable, Springer, Berlin, 1965 | MR | Zbl

[28] Igbida N., Ouaro S., Soma S., “Elliptic problem involving diffuse measure data”, J. Diff. Eqns., 253:12 (2012), 3159–3183 | DOI | MR | Zbl

[29] Kozhevnikova L.M., On solutions of anisotropic elliptic equations with variable exponent and measure data, E-print, 2018, arXiv: 1808.09624 [math.AP] | MR | Zbl

[30] S. N. Kružkov, “First order quasilinear equations in several independent variables”, Math. USSR, Sb., 10:2 (1970), 217–243 | DOI | MR | Zbl | Zbl

[31] G. I. Laptev, “Weak solutions of second-order quasilinear parabolic equations with double non-linearity”, Sb. Math., 188:9 (1997), 1343–1370 | DOI | DOI | MR | Zbl

[32] Leray J., Lions J.-L., “Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty–Browder”, Bull. Soc. math. France, 93 (1965), 97–107 | DOI | MR | Zbl

[33] Liang J., Rodrigues J.F., “Quasilinear elliptic problems with nonmonotone discontinuities and measure data”, Port. Math., 53:2 (1996), 239–252 | MR | Zbl

[34] Lukkari T., “The fast diffusion equation with measure data”, Nonlinear Diff. Eqns. Appl., 19:3 (2012), 329–343 | DOI | MR | Zbl

[35] Malusa A., Porzio M.M., “Renormalized solutions to elliptic equations with measure data in unbounded domains”, Nonlinear Anal. Theory Methods Appl., 67:8 (2007), 2370–2389 | DOI | MR | Zbl

[36] Marcus M., Veron L., Boundary trace of positive solutions of semilinear elliptic equations in Lipschitz domains: The subcritical case, E-print, 2010, arXiv: math.AP/1008.4222 [math.AP] | MR

[37] F. Kh. Mukminov, “Uniqueness of the renormalized solution of an elliptic–parabolic problem in anisotropic Sobolev–Orlicz spaces”, Sb. Math., 208:8 (2017), 1187–1206 | DOI | DOI | MR | MR | Zbl

[38] F. Kh. Mukminov, “Existence of a renormalized solution to an anisotropic parabolic problem with variable nonlinearity exponents”, Sb. Math., 209:5 (2018), 714–738 | DOI | DOI | MR | Zbl

[39] Murat F., Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023, Lab. anal. numer., Univ. Paris VI, Paris, 1993 http://archive.schools.cimpa.info/anciensite/NotesCours/PDF/2009/Alexandrie_Murat_2.pdf

[40] Nyanquini I., Ouaro S., Soma S., “Entropy solution to nonlinear multivalued elliptic problem with variable exponents and measure data”, Ann. Univ. Craiova. Math. Comput. Sci. Ser., 40:2 (2013), 174–198 | MR | Zbl

[41] Orsina L., Prignet A., “Non-existence of solutions for some nonlinear elliptic equations involving measures”, Proc. R. Soc. Edinb. Sect. A: Math., 130:1 (2000), 167–187 | DOI | MR | Zbl

[42] Otto F., “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Diff. Eqns., 131:1 (1996), 20–38 | DOI | MR | Zbl

[43] Petitta F., “Renormalized solutions of nonlinear parabolic equations with general measure data”, Ann. Mat. Pura Appl., 187:4 (2008), 563–604 | DOI | MR | Zbl

[44] Petitta F., “A non-existence result for nonlinear parabolic equations with singular measures as data”, Proc. R. Soc. Edinb. Sect. A: Math., 139:2 (2009), 381–392 | DOI | MR | Zbl

[45] Petitta F., Ponce A.C., Porretta A., “Diffuse measures and nonlinear parabolic equations”, J. Evol. Eqns., 11:4 (2011), 861–905 | DOI | MR | Zbl

[46] Porretta A., “Nonlinear equations with natural growth terms and measure data”, Electron. J. Diff. Eqns., 2002, Conf. 09 (2002), 183–202 | MR | Zbl

[47] Prignet A., “Existence and uniqueness of “entropy” solutions of parabolic problems with $L^1$ data”, Nonlinear Anal. Theory Methods Appl., 28:12 (1997), 1943–1954 | DOI | MR | Zbl

[48] Serrin J., “Pathological solutions of elliptic differential equations”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 3, 18:3 (1964), 385–387 | MR | Zbl

[49] Smarrazzo F., “On a class of quasilinear elliptic equations with degenerate coerciveness and measure data”, Adv. Nonlinear Stud., 18:2 (2018), 361–392 | DOI | MR | Zbl

[50] Sturm S., “Existence of very weak solutions of doubly nonlinear parabolic equations with measure data”, Ann. Acad. sci. Fenn. Math., 42 (2017), 931–962 | DOI | MR | Zbl

[51] Zaki K., Redwane H., “Nonlinear parabolic equations with blowing-up coefficients with respect to the unknown and with soft measure data”, Electron. J. Diff. Eqns., 2016 (2016), 327 | DOI | MR | Zbl

[52] Zaki K., Redwane H., “Nonlinear parabolic equations with singular coefficient and diffuse data”, Nonlinear Dyn. Syst. Theory, 17:4 (2017), 421–432 | MR | Zbl

[53] Zhang C., Zhou S., “Entropy and renormalized solutions for the $p(x)$-Laplacian equation with measure data”, Bull. Aust. Math. Soc., 82:3 (2010), 459–479 | DOI | MR | Zbl