Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify all global spherically symmetric solutions of Einstein's equations with an electromagnetic field and a cosmological constant. The classification comprises 11 topologically inequivalent solutions. The spacetime is assumed to be a warped product of two surfaces. The study of global properties of solutions is carried out by the method of conformal blocks, which consists in analyzing the zeros and poles of a conformal factor contained in the spacetime metric.
@article{TM_2019_306_a1,
     author = {D. E. Afanasev},
     title = {Global {Structure} of {Spherically} {Symmetric} {Solutions} of {Einstein's} {Equations} with an {Electromagnetic} {Field}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {306},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_306_a1/}
}
TY  - JOUR
AU  - D. E. Afanasev
TI  - Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 16
EP  - 27
VL  - 306
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_306_a1/
LA  - ru
ID  - TM_2019_306_a1
ER  - 
%0 Journal Article
%A D. E. Afanasev
%T Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 16-27
%V 306
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_306_a1/
%G ru
%F TM_2019_306_a1
D. E. Afanasev. Global Structure of Spherically Symmetric Solutions of Einstein's Equations with an Electromagnetic Field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics and applications, Tome 306 (2019), pp. 16-27. http://geodesic.mathdoc.fr/item/TM_2019_306_a1/

[1] M. O. Katanaev, Geometrical methods in mathematical physics, E-print, 2016, arXiv: 1311.0733v3 [math-ph]

[2] M. O. Katanaev, “Global solutions in gravity. Lorentzian signature”, Proc. Steklov Inst. Math., 228 (2000), 158–183 | MR | Zbl

[3] Katanaev M.O., Klösch T., Kummer W., “Global properties of warped solutions in general relativity”, Ann. Phys., 276:2 (1999), 191–222 ; Kramer D., Shtefani Kh., Kherlt E., Mak-Kallum M., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | DOI | MR | Zbl

[4] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein's Field Equations, Dtsch. Verlag Wiss., Berlin, 1980 | MR

[5] Nordström G., “On the energy of the gravitation field in Einstein's theory”, Proc. K. Ned. Akad. Wet., 20 (1918), 1238–1245

[6] Reissner H., “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Phys., 355:9 (1916), 106–120 | DOI