Density of Roots of the Yamada Polynomial of Spatial Graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 148-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We recall the construction and survey the properties of the Yamada polynomial of spatial graphs and present formulas for the Yamada polynomial of some classes of graphs. Then we construct an infinite family of spatial graphs for which the roots of the Yamada polynomials are dense in the complex plane.
Mots-clés : Yamada polynomial, spatial graph, chain polynomial.
@article{TM_2019_305_a6,
     author = {Miaowang Li and Fengchun Lei and Fengling Li and Andrei Yu. Vesnin},
     title = {Density of {Roots} of the {Yamada} {Polynomial} of {Spatial} {Graphs}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {148--161},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a6/}
}
TY  - JOUR
AU  - Miaowang Li
AU  - Fengchun Lei
AU  - Fengling Li
AU  - Andrei Yu. Vesnin
TI  - Density of Roots of the Yamada Polynomial of Spatial Graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 148
EP  - 161
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a6/
LA  - ru
ID  - TM_2019_305_a6
ER  - 
%0 Journal Article
%A Miaowang Li
%A Fengchun Lei
%A Fengling Li
%A Andrei Yu. Vesnin
%T Density of Roots of the Yamada Polynomial of Spatial Graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 148-161
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a6/
%G ru
%F TM_2019_305_a6
Miaowang Li; Fengchun Lei; Fengling Li; Andrei Yu. Vesnin. Density of Roots of the Yamada Polynomial of Spatial Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 148-161. http://geodesic.mathdoc.fr/item/TM_2019_305_a6/

[1] Agol I., Krushkal V., Structure of the flow and Yamada polynomials of cubic graphs, E-print, 2018, arXiv: 1801.00502 [math.CO]

[2] Beraha S., Kahane J., Weiss N.J., “Limits of zeros of recursively defined families of polynomials”, Studies in foundations and combinatorics, Adv. Math. Suppl. Stud., 1, ed. by G.-C. Rota, Acad. Press, New York, 1978, 213–232

[3] Conway J.H., Gordon C.McA., “Knots and links in spatial graphs”, J. Graph Theory, 7 (1983), 445–453 | DOI | Zbl

[4] Csikvári P., Frenkel P.E., Hlafký J., Hubai T., “Chromatic roots and limit of dense graphs”, Discrete Math., 340:5 (2017), 1129–1135 | DOI | Zbl

[5] Dasbach O.T., Le T.D., Lin X.-S., “Quantum morphing and the Jones polynomial”, Commun. Math. Phys., 224:2 (2001), 427–442 | DOI | Zbl

[6] Deng Q., Jin X., Kauffman L.H., “The generalized Yamada polynomials of virtual spatial graphs”, Topology Appl., 256 (2019), 136–158 ; arXiv: 1806.06462 [math.GT] | DOI | Zbl

[7] Dobrynin A.A., Vesnin A.Yu., “On the Yoshinaga polynomial of spatial graphs”, Kobe J. Math., 20:1–2 (2003), 31–37 | Zbl

[8] Fleming T., Mellor B., “Virtual spatial graphs”, Kobe J. Math., 24:2 (2007), 67–85 | Zbl

[9] Jin X., Zhang F., “On computing Kauffman bracket polynomial of Montesinos links”, J. Knot Theory Ramifications, 19:8 (2010), 1001–1023 | DOI | Zbl

[10] Jin X., Zhang F., Dong F., Tay E.G., “Zeros of the Jones polynomial are dense in the complex plane”, Electron. J. Comb., 17:1 (2010), R94 | Zbl

[11] Kauffman L.H., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | Zbl

[12] Kawauchi A., A survey of knot theory, Birkhäuser, Basel, 1996 | Zbl

[13] Kinoshita S., “Alexander polynomials as isotopy invariants. I”, Osaka Math. J., 10 (1958), 263–271 | Zbl

[14] Kinoshita S., “Alexander polynomials as isotopy invariants. II”, Osaka Math. J., 11 (1959), 91–94 | Zbl

[15] Li M., Lei F., Li F., Vesnin A., “The Yamada polynomial of spatial graphs obtained by edge replacements”, J. Knot Theory Ramifications, 27:9 (2018), 1842004 | DOI | Zbl

[16] Miyazawa Y., “The Yamada polynomial for virtual graphs”, Intelligence of low dimensional topology 2006, Proc. Conf. (Hiroshima, Japan, July 22–26, 2006), Ser. Knots Everything, 40, ed. by J.S. Carter et al., World Scientific, Hackensack, NJ, 2007, 205–212 | Zbl

[17] Motohashi T., Ohyama Y., Taniyama K., “Yamada polynomial and crossing number of spatial graphs”, Rev. Mat. Univ. Complutense Madrid, 7:2 (1994), 247–277 | Zbl

[18] Murakami J., “The Yamada polynomial of spacial graphs and knit algebras”, Commun. Math. Phys., 155:3 (1993), 511–522 | DOI | Zbl

[19] Negami S., “Polynomial invariants of graphs”, Trans. Amer. Math. Soc., 299 (1987), 601–622 | DOI | Zbl

[20] Read R.C., Whitehead E.G., \textup {Jr.}, “Chromatic polynomials of homeomorphism classes of graphs”, Discrete Math., 204:1–3 (1999), 337–356 | DOI | Zbl

[21] Sokal A.D., “Chromatic roots are dense in the whole complex plane”, Comb. Probab. Comput., 13:2 (2004), 221–261 | DOI | Zbl

[22] Vershinin V., Vesnin A., “Yamada polynomial and Khovanov cohomology”, Intelligence of low dimensional topology 2006, Proc. Conf. (Hiroshima, Japan, July 22–26, 2006), Ser. Knots Everything, 40, ed. by J.S. Carter et al., World Scientific, Hackensack, NJ, 2007, 337–346 | Zbl

[23] Dobrynin A.A., Vesnin A., The Yamada polynomial for graphs embedded knot-wise into three-dimensional space https://www.researchgate.net/publication/266336562 | Zbl

[24] A. Yu. Vesnin and A. A. Dobrynin, “The Yamada polynomial for graphs embedded knot-wise into three-dimensional space”, Vychisl. Sistemy, 155 (1996), 37–86 | Zbl

[25] A. A. Dobrynin and A. Vesnin, The Yamada polynomial for graphs embedded knot-wise into three-dimensional space https://www.researchgate.net/publication/266336562 | Zbl

[26] Yamada S., “An invariant of spatial graphs”, J. Graph Theory, 13:5 (1989), 537–551 | DOI | Zbl

[27] Yoshinaga S., “An invariant of spatial graphs associated with $U(q)(\mathrm {sl}(2,\mathbf C))$”, Kobe J. Math., 8:1 (1991), 25–40 | Zbl