Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a6, author = {Miaowang Li and Fengchun Lei and Fengling Li and Andrei Yu. Vesnin}, title = {Density of {Roots} of the {Yamada} {Polynomial} of {Spatial} {Graphs}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {148--161}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a6/} }
TY - JOUR AU - Miaowang Li AU - Fengchun Lei AU - Fengling Li AU - Andrei Yu. Vesnin TI - Density of Roots of the Yamada Polynomial of Spatial Graphs JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 148 EP - 161 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a6/ LA - ru ID - TM_2019_305_a6 ER -
%0 Journal Article %A Miaowang Li %A Fengchun Lei %A Fengling Li %A Andrei Yu. Vesnin %T Density of Roots of the Yamada Polynomial of Spatial Graphs %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 148-161 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a6/ %G ru %F TM_2019_305_a6
Miaowang Li; Fengchun Lei; Fengling Li; Andrei Yu. Vesnin. Density of Roots of the Yamada Polynomial of Spatial Graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 148-161. http://geodesic.mathdoc.fr/item/TM_2019_305_a6/
[1] Agol I., Krushkal V., Structure of the flow and Yamada polynomials of cubic graphs, E-print, 2018, arXiv: 1801.00502 [math.CO]
[2] Beraha S., Kahane J., Weiss N.J., “Limits of zeros of recursively defined families of polynomials”, Studies in foundations and combinatorics, Adv. Math. Suppl. Stud., 1, ed. by G.-C. Rota, Acad. Press, New York, 1978, 213–232
[3] Conway J.H., Gordon C.McA., “Knots and links in spatial graphs”, J. Graph Theory, 7 (1983), 445–453 | DOI | Zbl
[4] Csikvári P., Frenkel P.E., Hlafký J., Hubai T., “Chromatic roots and limit of dense graphs”, Discrete Math., 340:5 (2017), 1129–1135 | DOI | Zbl
[5] Dasbach O.T., Le T.D., Lin X.-S., “Quantum morphing and the Jones polynomial”, Commun. Math. Phys., 224:2 (2001), 427–442 | DOI | Zbl
[6] Deng Q., Jin X., Kauffman L.H., “The generalized Yamada polynomials of virtual spatial graphs”, Topology Appl., 256 (2019), 136–158 ; arXiv: 1806.06462 [math.GT] | DOI | Zbl
[7] Dobrynin A.A., Vesnin A.Yu., “On the Yoshinaga polynomial of spatial graphs”, Kobe J. Math., 20:1–2 (2003), 31–37 | Zbl
[8] Fleming T., Mellor B., “Virtual spatial graphs”, Kobe J. Math., 24:2 (2007), 67–85 | Zbl
[9] Jin X., Zhang F., “On computing Kauffman bracket polynomial of Montesinos links”, J. Knot Theory Ramifications, 19:8 (2010), 1001–1023 | DOI | Zbl
[10] Jin X., Zhang F., Dong F., Tay E.G., “Zeros of the Jones polynomial are dense in the complex plane”, Electron. J. Comb., 17:1 (2010), R94 | Zbl
[11] Kauffman L.H., “Invariants of graphs in three-space”, Trans. Amer. Math. Soc., 311:2 (1989), 697–710 | DOI | Zbl
[12] Kawauchi A., A survey of knot theory, Birkhäuser, Basel, 1996 | Zbl
[13] Kinoshita S., “Alexander polynomials as isotopy invariants. I”, Osaka Math. J., 10 (1958), 263–271 | Zbl
[14] Kinoshita S., “Alexander polynomials as isotopy invariants. II”, Osaka Math. J., 11 (1959), 91–94 | Zbl
[15] Li M., Lei F., Li F., Vesnin A., “The Yamada polynomial of spatial graphs obtained by edge replacements”, J. Knot Theory Ramifications, 27:9 (2018), 1842004 | DOI | Zbl
[16] Miyazawa Y., “The Yamada polynomial for virtual graphs”, Intelligence of low dimensional topology 2006, Proc. Conf. (Hiroshima, Japan, July 22–26, 2006), Ser. Knots Everything, 40, ed. by J.S. Carter et al., World Scientific, Hackensack, NJ, 2007, 205–212 | Zbl
[17] Motohashi T., Ohyama Y., Taniyama K., “Yamada polynomial and crossing number of spatial graphs”, Rev. Mat. Univ. Complutense Madrid, 7:2 (1994), 247–277 | Zbl
[18] Murakami J., “The Yamada polynomial of spacial graphs and knit algebras”, Commun. Math. Phys., 155:3 (1993), 511–522 | DOI | Zbl
[19] Negami S., “Polynomial invariants of graphs”, Trans. Amer. Math. Soc., 299 (1987), 601–622 | DOI | Zbl
[20] Read R.C., Whitehead E.G., \textup {Jr.}, “Chromatic polynomials of homeomorphism classes of graphs”, Discrete Math., 204:1–3 (1999), 337–356 | DOI | Zbl
[21] Sokal A.D., “Chromatic roots are dense in the whole complex plane”, Comb. Probab. Comput., 13:2 (2004), 221–261 | DOI | Zbl
[22] Vershinin V., Vesnin A., “Yamada polynomial and Khovanov cohomology”, Intelligence of low dimensional topology 2006, Proc. Conf. (Hiroshima, Japan, July 22–26, 2006), Ser. Knots Everything, 40, ed. by J.S. Carter et al., World Scientific, Hackensack, NJ, 2007, 337–346 | Zbl
[23] Dobrynin A.A., Vesnin A., The Yamada polynomial for graphs embedded knot-wise into three-dimensional space https://www.researchgate.net/publication/266336562 | Zbl
[24] A. Yu. Vesnin and A. A. Dobrynin, “The Yamada polynomial for graphs embedded knot-wise into three-dimensional space”, Vychisl. Sistemy, 155 (1996), 37–86 | Zbl
[25] A. A. Dobrynin and A. Vesnin, The Yamada polynomial for graphs embedded knot-wise into three-dimensional space https://www.researchgate.net/publication/266336562 | Zbl
[26] Yamada S., “An invariant of spatial graphs”, J. Graph Theory, 13:5 (1989), 537–551 | DOI | Zbl
[27] Yoshinaga S., “An invariant of spatial graphs associated with $U(q)(\mathrm {sl}(2,\mathbf C))$”, Kobe J. Math., 8:1 (1991), 25–40 | Zbl