Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 86-147

Voir la notice de l'article provenant de la source Math-Net.Ru

We study combinatorial properties of polytopes realizable in the Lobachevsky space $\mathbb L^3$ as polytopes of finite volume with right dihedral angles. On the basis of E. M. Andreev's theorem we prove that cutting off ideal vertices of right-angled polytopes defines a one-to-one correspondence with strongly cyclically four-edge-connected polytopes different from the cube and the pentagonal prism. We show that any polytope of the latter family can be obtained by cutting off a matching of a polytope from the same family or of the cube with at most two nonadjacent orthogonal edges cut, in such a way that each quadrangle results from cutting off an edge. We refine D. Barnette's construction of this family of polytopes and present its application to right-angled polytopes. We refine the known construction of ideal right-angled polytopes using edge twists and describe its connection with D. Barnette's construction via perfect matchings. We make a conjecture on the behavior of the volume under operations and give arguments to support it.
@article{TM_2019_305_a5,
     author = {N. Yu. Erokhovets},
     title = {Three-Dimensional {Right-Angled} {Polytopes} of {Finite} {Volume} in the {Lobachevsky} {Space:} {Combinatorics} and {Constructions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--147},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a5/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 86
EP  - 147
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a5/
LA  - ru
ID  - TM_2019_305_a5
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 86-147
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a5/
%G ru
%F TM_2019_305_a5
N. Yu. Erokhovets. Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 86-147. http://geodesic.mathdoc.fr/item/TM_2019_305_a5/