Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 86-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study combinatorial properties of polytopes realizable in the Lobachevsky space $\mathbb L^3$ as polytopes of finite volume with right dihedral angles. On the basis of E. M. Andreev's theorem we prove that cutting off ideal vertices of right-angled polytopes defines a one-to-one correspondence with strongly cyclically four-edge-connected polytopes different from the cube and the pentagonal prism. We show that any polytope of the latter family can be obtained by cutting off a matching of a polytope from the same family or of the cube with at most two nonadjacent orthogonal edges cut, in such a way that each quadrangle results from cutting off an edge. We refine D. Barnette's construction of this family of polytopes and present its application to right-angled polytopes. We refine the known construction of ideal right-angled polytopes using edge twists and describe its connection with D. Barnette's construction via perfect matchings. We make a conjecture on the behavior of the volume under operations and give arguments to support it.
@article{TM_2019_305_a5,
     author = {N. Yu. Erokhovets},
     title = {Three-Dimensional {Right-Angled} {Polytopes} of {Finite} {Volume} in the {Lobachevsky} {Space:} {Combinatorics} and {Constructions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--147},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a5/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 86
EP  - 147
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a5/
LA  - ru
ID  - TM_2019_305_a5
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 86-147
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a5/
%G ru
%F TM_2019_305_a5
N. Yu. Erokhovets. Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 86-147. http://geodesic.mathdoc.fr/item/TM_2019_305_a5/

[1] Alekseevski D.V., Michor P.W., Neretin Yu.A., “Rolling of Coxeter polyhedra along mirrors”, Geometric methods in physics, XXXI Workshop (Białowieża, Poland, June 2012), Trends Math., Birkhäuzer, Basel, 2013, 67–86 | Zbl

[2] D. V. Alekseevskij, E. B. Vinberg, and A. S. Solodovnikov, “Geometry of spaces of constant curvature”, Geometry–2, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 29, VINITI, Moscow, 1988, 5–146

[3] Geometry. II: Spaces of Constant Curvature, Encycl. Math. Sci., 29, Springer, Berlin, 1993, 1–138

[4] Andova V., Kardoš F., Škrekovski R., “Mathematical aspects of fullerenes”, Ars Math. Contemp., 11:2 (2016), 353–379 | DOI | Zbl

[5] E. M. Andreev, “On convex polyhedra in Lobačevskiĭ spaces”, Math. USSR, Sb., 10:3 (1970), 413–440 | DOI | Zbl

[6] E. M. Andreev, “On convex polyhedra of finite volume in Lobačevskiĭ space”, Math. USSR, Sb., 12:2 (1970), 255–259 | DOI | Zbl

[7] Barnette D., “On generating planar graphs”, Discrete Math., 7:3–4 (1974), 199–208 | DOI | Zbl

[8] Barnette D., “Generating the $c^*5$-connected graphs”, Isr. J. Math., 28:1–2 (1977), 151–160 | DOI | Zbl

[9] Birkhoff G.D., “The reducibility of maps”, Amer. J. Math., 35:2 (1913), 115–128 | DOI | Zbl

[10] Bobenko A.I., Pinkall U., Springborn B.A., “Discrete conformal maps and ideal hyperbolic polyhedra”, Geom. Topol., 19:4 (2015), 2155–2215 | DOI | Zbl

[11] Bobenko A.I., Springborn B.A., “Variational principles for circle patterns and Koebe's theorem”, Trans. Amer. Math. Soc., 356:2 (2004), 659–689 | DOI | Zbl

[12] Bondy J.A., Murty U.S.R., Graph theory, Grad. Texts Math., 244, Springer, Berlin, 2008 | DOI | Zbl

[13] Brinkmann G., Greenberg S., Greenhill C., McKay B.D., Thomas R., Wollan P., “Generation of simple quadrangulations of the sphere”, Discrete Math., 305:1–3 (2005), 33–54 | DOI | Zbl

[14] Brückner M., Vielecke und Vielflache: Theorie und Geschichte, B. G. Teubner, Leipzig, 1900 | Zbl

[15] V. M. Buchstaber and N. Yu. Erokhovets, “Truncations of simple polytopes and applications”, Proc. Steklov Inst. Math., 289 (2015), 104–133 | DOI | DOI | Zbl

[16] Buchstaber V.M., Erokhovets N.Yu., “Fullerenes, polytopes and toric topology”, Combinatorial and toric homotopy: Introductory lectures, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore, 35, World Scientific, Hackensack, NJ, 2017, 67–178; arXiv: 1609.02949 [math.AT]

[17] V. M. Buchstaber and N. Yu. Erokhovets, “Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes”, Izv. Math., 81:5 (2017), 901–972 | DOI | DOI | Zbl

[18] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | DOI | DOI | Zbl

[19] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | Zbl

[20] V. M. Buchstaber and T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russ. Math. Surv., 71:6 (2016), 1137–1139 | DOI | DOI | Zbl

[21] V. M. Buchstaber and A. P. Veselov, “Conway topograph, $\mathrm {PSL}_2(\mathbb Z)$-dynamics and two-valued groups”, Russ. Math. Surv., 74:3 (2019), 387–430 | DOI | DOI

[22] Butler J.W., “A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs”, Can. J. Math., 26:3 (1974), 686–708 | DOI | Zbl

[23] Chudnovsky M., Seymour P., “Perfect matchings in planar cubic graphs”, Combinatorica, 32:4 (2012), 403–424 | DOI | Zbl

[24] M. Deza, M. Dutour Sikirić, and M. I. Shtogrin, “Fullerenes and disk-fullerenes”, Russ. Math. Surv., 68:4 (2013), 665–720 | DOI | DOI | Zbl

[25] Diestel R., Graph theory, 2nd ed., Grad. Texts Math., 173, Springer, Berlin, 2000 | Zbl

[26] Došlić T., “On lower bounds of number of perfect matchings in fullerene graphs”, J. Math. Chem., 24:4 (1998), 359–364 | DOI

[27] Došlić T., “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, J. Math. Chem., 33:2 (2003), 103–112 | DOI

[28] Eberhard V., Zur Morphologie der Polyeder, B. G. Teubner, Leipzig, 1891

[29] N. Yu. Erokhovets, “$k$-Belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets”, Dal'nevost. Mat. Zh., 15:2 (2015), 197–213 | Zbl

[30] Erokhovets N., “Construction of fullerenes and Pogorelov polytopes with 5-, 6- and one 7-gonal face”, Symmetry, 10:3 (2018), 67 | DOI | Zbl

[31] Esperet L., Kardoš F., King A.D., Král' D., Norine S., “Exponentially many perfect matchings in cubic graphs”, Adv. Math., 227:4 (2011), 1646–1664 | DOI | Zbl

[32] Fan F., Ma J., Wang X., $B$-rigidity of flag 2-spheres without 4-belt, E-print, 2015, arXiv: 1511.03624 [math.AT]

[33] Faulkner G.B., Younger D.H., “The recursive generation of cyclically $k$-connected cubic planar maps”, Proc. 25th Summer Meet. Can. Math. Congr. (Thunder Bay, June 16–18, 1971), Lakehead Univ., Thunder Bay, Ontario, 1971, 349–356

[34] Grünbaum B., Convex polytopes, Grad. Texts Math., 221, Springer, New York, 2003 | DOI

[35] Hodgson C.D., Rivin I., “A characterization of compact convex polyhedra in hyperbolic 3-space”, Invent. math., 111:1 (1993), 77–111 | DOI | Zbl

[36] Inoue T., “Organizing volumes of right-angled hyperbolic polyhedra”, Algebr. Geom. Topol., 8:3 (2008), 1523–1565 | DOI | Zbl

[37] Inoue T., The 825 smallest right-angled hyperbolic polyhedra, E-print, 2015, arXiv: 1512.01761 [math.GT]

[38] I. V. Izmestiev, “Three-dimensional manifolds defined by coloring a simple polytope”, Math. Notes, 69:3 (2001), 340–346 | DOI | DOI | Zbl

[39] M. Joswig, “The group of projectivities and colouring of the facets of a simple polytope”, Russ. Math. Surv., 56:3 (2001), 584–585 | DOI | DOI | Zbl

[40] Kardoš F., Král' D., Miškuf J., Sereni J.-S., “Fullerene graphs have exponentially many perfect matchings”, J. Math. Chem., 46:2 (2009), 443–447 | DOI | Zbl

[41] Kardoš F., Škrekovski R., “Cyclic edge-cuts in fullerene graphs”, J. Math. Chem., 22:1 (2008), 121–132 | DOI

[42] König D., Theorie der endlichen und unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe, Akad. Verlag., Leipzig, 1936

[43] Kotzig A., “Regularly connected trivalent graphs without non-trivial cuts of cardinality 3”, Acta Fac. Rerum Nat. Univ. Comenianae. Math., 21 (1969), 1–14 | Zbl

[44] Kutnar K., Marušič D., “On cyclic edge-connectivity of fullerenes”, Discrete Appl. Math., 156 (2008), 1661–1669 | DOI | Zbl

[45] Lanner F., On complexes with transitive groups of automorphisms, Meddel. Lunds Univ. Mat. Sem., 11, Lund Univ., Lund, 1950 | Zbl

[46] Lovász L., Plummer M.D., Matching theory, Ann. Discrete Math., 29, North-Holland, Amsterdam, 1986 | Zbl

[47] McCuaig W., “Edge reductions in cyclically $k$-connected cubic graphs”, J. Comb. Theory. Ser. B, 56:1 (1992), 16–44 | DOI | Zbl

[48] Nedela R., Škoviera M., “Atoms of cyclic connectivity in cubic graphs”, Math. Slovaca, 45:5 (1995), 481–499 | Zbl

[49] Petersen J., “Die Theorie der regulären Graphs”, Acta math., 15 (1891), 193–220 | DOI

[50] Plesník J., “Connectivity of regular graphs and the existence of 1-factors”, Mat. Čas., Slovensk. Akad. Vied, 22 (1972), 310–318 | Zbl

[51] A. V. Pogorelov, “A regular partition of Lobachevskian space”, Math. Notes, 1:1 (1967), 3–5 | DOI | Zbl

[52] Rivin I., “Euclidean structures on simplicial surfaces and hyperbolic volume”, Ann. Math. Ser. 2, 139:3 (1994), 553–580 | DOI | Zbl

[53] Rivin I., “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. Math. Ser. 2, 143:1 (1996), 51–70 | DOI | Zbl

[54] Schramm O., “How to cage an egg”, Invent. math., 107:3 (1992), 543–560 | DOI | Zbl

[55] Springborn B., Hyperbolic polyhedra and discrete uniformization, E-print, 2017, arXiv: 1707.06848v3 [math.MG]

[56] Steinitz E., “Polyeder und Raumeinteilungen”, Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Heft 9, Kap. IIIAB12, v. III, Geometrie, B. G. Teubner, Leipzig, 1922, 1–139

[57] Thurston W.P., The geometry and topology of three-manifolds (electron. vers. 1.1), MSRI, Berkeley, CA, 2002 http://www.msri.org/publications/books/gt3m/

[58] Tutte W.T., “A non-Hamiltonian planar graph”, Acta math. Acad. sci. Hung., 11 (1960), 371–375 | DOI | Zbl

[59] Tutte W.T., “A theory of 3-connected graphs”, Nederl. Akad. Wet. Proc. Ser. A, 64 (1961), 441–455 | Zbl

[60] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | Zbl

[61] A. Yu. Vesnin, “Right-angled polyhedra and hyperbolic 3-manifolds”, Russ. Math. Surv., 72:2 (2017), 335–374 | DOI | DOI | Zbl

[62] È. B. Vinberg, “Discrete groups generated by reflections in Lobačevskiĭ spaces”, Math. USSR, Sb., 1:3 (1967), 429–444 | DOI | Zbl

[63] E. B. Vinberg and O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry–2, Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl., 29, VINITI, Moscow, 1988, 147–259

[64] Geometry. II: Spaces of Constant Curvature, Encycl. Math. Sci., 29, Springer, Berlin, 1993, 139–248

[65] V. D. Volodin, “Combinatorics of flag simplicial 3-polytopes”, Russ. Math. Surv., 70:1 (2015), 168–170 | DOI | DOI | Zbl

[66] Wang B., Zhang Z., “On cyclic edge-connectivity of transitive graphs”, Discrete Math., 309:13 (2009), 4555–4563 | DOI | Zbl

[67] Whitney H., “Congruent graphs and the connectivity of graphs”, Amer. J. Math., 54 (1932), 150–168 ; Tsigler G.M., Teoriya mnogogrannikov, MTsNMO, M., 2014 | DOI

[68] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, Berlin, 1995 | DOI | Zbl