Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a4, author = {A. M. Vershik}, title = {Three {Theorems} on the {Uniqueness} of the {Plancherel} {Measure} from {Different} {Viewpoints}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {71--85}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a4/} }
TY - JOUR AU - A. M. Vershik TI - Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 71 EP - 85 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a4/ LA - ru ID - TM_2019_305_a4 ER -
A. M. Vershik. Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 71-85. http://geodesic.mathdoc.fr/item/TM_2019_305_a4/
[1] Aissen M., Schoenberg I.J., Whitney A.M., “On the generating functions of totally positive sequences. I”, J. anal. math., 2 (1952), 93–103 | DOI | Zbl
[2] I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, “Models of representations of compact Lie groups”, Funct. Anal. Appl., 9:4 (1975), 322–324 | DOI
[3] Borodin A., Okounkov A., Olshanski G., “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 | DOI | Zbl
[4] Buchstaber V.M., Glutsyuk A.A., “Total positivity, Grassmannian and modified Bessel functions”, Functional analysis and geometry: Selim Grigorievich Krein centennial, Contemp. Math., 733, Amer. Math. Soc., Providence, RI, 2019, 97–107 ; arXiv: 1708.02154 [math.DS] | DOI
[5] Bufetov A., Gorin V., “Stochastic monotonicity in Young graph and Thoma theorem”, Int. Math. Res. Not., 2015:23 (2015), 12920–12940 | Zbl
[6] J. Dixmier, Les $C^*$-algèbres et leurs represéntations, Gauthier-Villars, Paris, 1969 | Zbl
[7] Edrei A., “On the generating functions of totally positive sequences. II”, J. anal. math., 2 (1952), 104–109 | DOI | Zbl
[8] Fomin S., “Duality of graded graphs”, J. Algebr. Comb., 3:4 (1994), 357–404 | DOI | Zbl
[9] Fomin S., Zelevinsky A., “Total positivity: tests and parametrizations”, Math. Intell., 22:1 (2000), 23–33 ; arXiv: math/9912128 [math.RA] | DOI | Zbl
[10] Gantmacher F.R., Krein M.G., Oscillation matrices and kernels and small vibrations of mechanical systems, Rev. ed., AMS Chelsea Publ., Providence, RI, 2002 | Zbl
[11] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, CA, 1968 | Zbl
[12] Kerov S.V., “Generalized Hall–Littlewood symmetric functions and orthogonal polynomials”, Representation theory and dynamical systems, Adv. Sov. Math., 9, Amer. Math. Soc., Providence, RI, 1992, 67–94
[13] Kerov S.V., Asymptotic representation theory of the symmetric group and its applications in analysis, Transl. Math. Monogr., 219, Amer. Math. Soc., Providence, RI, 2003 | DOI | Zbl
[14] A. A. Klyachko, “Centralizers of involutions and models of the symmetric and full linear groups”, Studies in Number Theory, v. 7, Saratov. Gos. Univ., Saratov, 1978, 59–64
[15] Logan B.F., Shepp L.A., “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | Zbl
[16] Lusztig G., “A survey of total positivity”, Milan J. Math., 76 (2008), 125–134 ; arXiv: 0705.3842 [math.RT] | DOI | Zbl
[17] Matveev K., “Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture”, Ann. Math. Ser. 2, 189:1 (2019), 277–316 | DOI | Zbl
[18] A. Yu. Okounkov, “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28:2 (1994), 100–107 | DOI | Zbl
[19] A. Okounkov and G. Olshanski, “Shifted Schur functions”, St. Petersburg Math. J., 9:2 (1998), 239–300 | Zbl
[20] F. V. Petrov, “The asymptotics of traces of paths in the Young and Schur graphs”, Zap. Nauchn. Semin. POMI, 468 (2018), 126–137
[21] Romik D., Śniady P., “Jeu de taquin dynamics on infinite Young tableaux and second class particles”, Ann. Probab., 43:2 (2015), 682–737 | DOI | Zbl
[22] Schoenberg I.J., “Some analytical aspects of the problem of smoothing”, Studies and essays: Courant anniversary volume, Interscience, New York, 1948, 351–370
[23] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967
[24] Śniady P., “Robinson–Schensted–Knuth algorithm, jeu de taquin, and Kerov–Vershik measures on infinite tableaux”, SIAM J. Discrete Math., 28:2 (2014), 598–630 | DOI | Zbl
[25] Stanley R.P., “Differential posets”, J. Amer. Math. Soc., 1:4 (1988), 919–961 | DOI | Zbl
[26] Thoma E., “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | Zbl
[27] A. M. Vershik, “A statistical sum associated with Young diagrams”, J. Sov. Math., 47:2 (1989), 2379–2386 | DOI | Zbl
[28] Vershik A.M., “Asymptotic combinatorics and algebraic analysis”, Proc. Int. Congr. Math. (Zürich, 1994), v. II, Birkhäuser, Basel, 1995, 1384–1394 | DOI | Zbl
[29] A. M. Vershik, “Statistical mechanics of combinatorial partitions, and their limit shapes”, Funct. Anal. Appl., 30:2 (1996), 90–105 | DOI | DOI | Zbl
[30] A. M. Vershik, “The problem of describing central measures on the path spaces of graded graphs”, Funct. Anal. Appl., 48:4 (2014), 256–271 | DOI | DOI | Zbl
[31] A. M. Vershik and S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tables”, Sov. Math. Dokl., 18 (1977), 527–531 | Zbl
[32] A. M. Vershik and S. V. Kerov, “Characters and factor representations of the infinite symmetric group”, Sov. Math. Dokl., 23 (1982), 389–392 | Zbl
[33] A. M. Vershik and S. V. Kerov, “Asymptotic of the largest and the typical dimensions of irreducible representations of a symmetric group”, Funct. Anal. Appl., 19:1 (1985), 21–31 | DOI | Zbl
[34] A. M. Vershik and S. V. Kerov, “Locally semisimple algebras. Combinatorial theory and the $K_0$-functor”, J. Sov. Math., 38:2 (1987), 1701–1733 | DOI | Zbl
[35] Vershik A.M., Kerov S.V., “The characters of the infinite symmetric group and probability properties of the Robinson–Schensted–Knuth algorithm”, SIAM J. Algebr. Discrete Methods, 7 (1986), 116–124 | DOI | Zbl
[36] A. M. Vershik and A. A. Shmidt, “Limit measures arising in the asymptotic theory of symmetric groups. I”, Theory Probab. Appl., 22:1 (1977), 70–85 | DOI | Zbl
[37] A. M. Vershik and A. A. Shmidt, “Limit measures arising in the asymptotic theory of symmetric groups. II”, Theory Probab. Appl., 23:1 (1978), 36–49 | DOI | Zbl | Zbl
[38] Whitney A.M., “A reduction theorem for totally positive matrices”, J. anal. math., 2 (1952), 88–92 | DOI | Zbl