The Associated Lie Algebra of a Right-Angled Coxeter Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 61-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the lower central series of a right-angled Coxeter group $\mathrm {RC}_\mathcal K$ and the associated graded Lie algebra $L(\mathrm {RC}_\mathcal K)$. The latter is related to the graph Lie algebra $L_\mathcal K$. We give an explicit combinatorial description of the first three consecutive factors of the lower central series of the group $\mathrm {RC}_\mathcal K$.
@article{TM_2019_305_a3,
     author = {Ya. A. Veryovkin},
     title = {The {Associated} {Lie} {Algebra} of a {Right-Angled} {Coxeter} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--70},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a3/}
}
TY  - JOUR
AU  - Ya. A. Veryovkin
TI  - The Associated Lie Algebra of a Right-Angled Coxeter Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 61
EP  - 70
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a3/
LA  - ru
ID  - TM_2019_305_a3
ER  - 
%0 Journal Article
%A Ya. A. Veryovkin
%T The Associated Lie Algebra of a Right-Angled Coxeter Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 61-70
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a3/
%G ru
%F TM_2019_305_a3
Ya. A. Veryovkin. The Associated Lie Algebra of a Right-Angled Coxeter Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 61-70. http://geodesic.mathdoc.fr/item/TM_2019_305_a3/

[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | Zbl

[2] V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russ. Math. Surv., 55:5 (2000), 825–921 | DOI | DOI | Zbl

[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | Zbl

[4] Duchamp G., Krob D., “The lower central series of the free partially commutative group”, Semigroup Forum, 45:3 (1992), 385–394 | DOI | Zbl

[5] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publ., New York, 1976 | Zbl

[6] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | DOI | Zbl

[7] Papadima S., Suciu A.I., “Algebraic invariants for right-angled Artin groups”, Math. Ann., 334:3 (2006), 533–555 | DOI | Zbl

[8] Struik R.R., “On nilpotent products of cyclic groups”, Can. J. Math., 12 (1960), 447–462 | DOI | Zbl

[9] Struik R.R., “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | Zbl

[10] Wade R.D., “The lower central series of a right-angled Artin group”, Enseign. math. Sér. 2, 61:3–4 (2015), 343–371 ; arXiv: 1109.1722 [math.GR] | DOI | Zbl