Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a3, author = {Ya. A. Veryovkin}, title = {The {Associated} {Lie} {Algebra} of a {Right-Angled} {Coxeter} {Group}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {61--70}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a3/} }
Ya. A. Veryovkin. The Associated Lie Algebra of a Right-Angled Coxeter Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 61-70. http://geodesic.mathdoc.fr/item/TM_2019_305_a3/
[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | Zbl
[2] V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russ. Math. Surv., 55:5 (2000), 825–921 | DOI | DOI | Zbl
[3] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | Zbl
[4] Duchamp G., Krob D., “The lower central series of the free partially commutative group”, Semigroup Forum, 45:3 (1992), 385–394 | DOI | Zbl
[5] W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Publ., New York, 1976 | Zbl
[6] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | DOI | Zbl
[7] Papadima S., Suciu A.I., “Algebraic invariants for right-angled Artin groups”, Math. Ann., 334:3 (2006), 533–555 | DOI | Zbl
[8] Struik R.R., “On nilpotent products of cyclic groups”, Can. J. Math., 12 (1960), 447–462 | DOI | Zbl
[9] Struik R.R., “On nilpotent products of cyclic groups. II”, Can. J. Math., 13 (1961), 557–568 | DOI | Zbl
[10] Wade R.D., “The lower central series of a right-angled Artin group”, Enseign. math. Sér. 2, 61:3–4 (2015), 343–371 ; arXiv: 1109.1722 [math.GR] | DOI | Zbl