Universal Formal Group for Elliptic Genus of Level~$N$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 40-60

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic function of level $N$ determines an elliptic genus of level $N$ as a Hirzebruch genus. It is known that any elliptic function of level $N$ is a specialization of the Krichever function that determines the Krichever genus. The Krichever function is the exponential of the universal Buchstaber formal group. In this work we give a specialization of the Buchstaber formal group such that this specialization determines formal groups corresponding to elliptic genera of level $N$. Namely, an elliptic function of level $N$ is the exponential of a formal group of the form $F(u,v) =(u^2 A(v) - v^2 A(u))/(u B(v) - v B(u))$, where $A(u),B(u)\in \mathbb C[[u]]$ are power series with complex coefficients such that $A(0)=B(0)=1$, $A''(0)=B'(0)=0$, and for $m = [(N-2)/2]$ and $n = [(N-1)/2]$ there exist parameters $(a_1,\dots ,a_m,b_1,\dots ,b_n)$ for which the relation $\prod _{j=1}^{n-1}(B(u) + b_j u)^2\cdot (B(u) + b_n u)^{N-2n} = A(u)^2 \prod _{k=1}^{m-1}(A(u) + a_k u^2)^2 \cdot (A(u) + a_m u^2)^{N-1-2m}$ holds. For the universal formal group of this form, the exponential is an elliptic function of level at most $N$. This statement is a generalization to the case $N>2$ of the well-known result that the elliptic function of level $2$ determining the elliptic Ochanine–Witten genus is the exponential of a universal formal group of the form $ F(u,v) =(u^2 - v^2)/(u B(v) - v B(u)) $, where $B(u)\in \mathbb C[[u]]$, $B(0)=1$, and $B'(0)=0$. We prove this statement for $N=3,4,5,6$. We also prove that the elliptic function of level $7$ is the exponential of a formal group of this form. Universal formal groups that correspond to elliptic genera of levels $N=5,6,7$ are obtained in this work for the first time.
Mots-clés : Hirzebruch genus, Krichever genus, formal group
Keywords: elliptic genus of level $N$, Buchstaber formal group, elliptic function of level $N$, Hirzebruch functional equation, elliptic curve.
@article{TM_2019_305_a2,
     author = {E. Yu. Bunkova},
     title = {Universal {Formal} {Group} for {Elliptic} {Genus} of {Level~}$N$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {40--60},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a2/}
}
TY  - JOUR
AU  - E. Yu. Bunkova
TI  - Universal Formal Group for Elliptic Genus of Level~$N$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 40
EP  - 60
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a2/
LA  - ru
ID  - TM_2019_305_a2
ER  - 
%0 Journal Article
%A E. Yu. Bunkova
%T Universal Formal Group for Elliptic Genus of Level~$N$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 40-60
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a2/
%G ru
%F TM_2019_305_a2
E. Yu. Bunkova. Universal Formal Group for Elliptic Genus of Level~$N$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 40-60. http://geodesic.mathdoc.fr/item/TM_2019_305_a2/