Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a18, author = {Megumi Harada and Tatsuya Horiguchi and Mikiya Masuda and Seonjeong Park}, title = {The {Volume} {Polynomial} of {Regular} {Semisimple} {Hessenberg} {Varieties} and the {Gelfand--Zetlin} {Polytope}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {344--373}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a18/} }
TY - JOUR AU - Megumi Harada AU - Tatsuya Horiguchi AU - Mikiya Masuda AU - Seonjeong Park TI - The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 344 EP - 373 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a18/ LA - ru ID - TM_2019_305_a18 ER -
%0 Journal Article %A Megumi Harada %A Tatsuya Horiguchi %A Mikiya Masuda %A Seonjeong Park %T The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 344-373 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a18/ %G ru %F TM_2019_305_a18
Megumi Harada; Tatsuya Horiguchi; Mikiya Masuda; Seonjeong Park. The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 344-373. http://geodesic.mathdoc.fr/item/TM_2019_305_a18/
[1] Abe H., DeDieu L., Galetto F., Harada M., “Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies”, Sel. math. New Ser., 24:3 (2018), 2129–2163 | DOI | Zbl
[2] Abe T., Horiguchi T., Masuda M., Murai S., Sato T., “Hessenberg varieties and hyperplane arrangements”, J. reine angew. Math., 2019 ; arXiv: 1611.00269 [math.AG] | DOI
[3] Anderson D., Tymoczko J., “Schubert polynomials and classes of Hessenberg varieties”, J. Algebra, 323:10 (2010), 2605–2623 | DOI | Zbl
[4] Ayzenberg A., Masuda M., “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381 | DOI | Zbl
[5] Brion M., “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties: Impanga lecture notes, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI
[6] Brosnan P., Chow T.Y., “Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties”, Adv. Math., 329 (2018), 955–1001 | DOI | Zbl
[7] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | Zbl
[8] Fulton W., Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | Zbl
[9] Guay-Paquet M., A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, E-print, 2016, arXiv: 1601.05498 [math.CO]
[10] Harada M., Precup M., “The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture”, J. Algebr. Comb. (to appear)
[11] Kaji S., Maple script for equivariant cohomology of flag manifolds, 2016 https://github.com/shizuo-kaji/Maple-flag-cohomology
[12] Kaveh K., “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164:13 (2015), 2461–2506 | DOI | Zbl
[13] Kaveh K., Khovanskii A., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | Zbl
[14] Kiritchenko V., “Gelfand–Zetlin polytopes and flag varieties”, Int. Math. Res. Not., 2010:13 (2010), 2512–2531 | Zbl
[15] V. A. Kirichenko, E. Yu. Smirnov, and V. A. Timorin, “Schubert calculus and Gelfand–Zetlin polytopes”, Russ. Math. Surv., 67:4 (2012), 685–719 | DOI | DOI | Zbl
[16] Kogan M., Schubert geometry of flag varieties and Gelfand–Cetlin theory, PhD Thesis, Mass. Inst. Technol., Cambridge, 2000
[17] Lee E., Masuda M., Park S., Toric Bruhat interval polytopes, E-print, 2019, arXiv: 1904.10187 [math.CO]
[18] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | DOI | DOI | Zbl
[19] Monk D., “The geometry of flag manifolds”, Proc. London Math. Soc. Ser. 3, 9 (1959), 253–286 | DOI | Zbl
[20] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | Zbl
[21] Shareshian J., Wachs M.L., “Chromatic quasisymmetric functions”, Adv. Math., 295 (2016), 497–551 | DOI | Zbl
[22] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | Zbl