The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 344-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regular semisimple Hessenberg varieties are subvarieties of the flag variety $\mathrm {Flag}(\mathbb C^n)$ arising naturally at the intersection of geometry, representation theory, and combinatorics. Recent results of Abe, Horiguchi, Masuda, Murai, and Sato as well as of Abe, DeDieu, Galetto, and Harada relate the volume polynomials of regular semisimple Hessenberg varieties to the volume polynomial of the Gelfand–Zetlin polytope $\mathrm {GZ}(\lambda )$ for $\lambda =(\lambda _1,\lambda _2,\dots ,\lambda _n)$. In the main results of this paper we use and generalize tools developed by Anderson and Tymoczko, by Kiritchenko, Smirnov, and Timorin, and by Postnikov in order to derive an explicit formula for the volume polynomials of regular semisimple Hessenberg varieties in terms of the volumes of certain faces of the Gelfand–Zetlin polytope, and also exhibit a manifestly positive, combinatorial formula for their coefficients with respect to the basis of monomials in the $\alpha _i := \lambda _i-\lambda _{i+1}$. In addition, motivated by these considerations, we carefully analyze the special case of the permutohedral variety, which is also known as the toric variety associated to Weyl chambers. In this case, we obtain an explicit decomposition of the permutohedron (the moment map image of the permutohedral variety) into combinatorial $(n-1)$-cubes, and also give a geometric interpretation of this decomposition by expressing the cohomology class of the permutohedral variety in $\mathrm {Flag}(\mathbb C^n)$ as a sum of the cohomology classes of a certain set of Richardson varieties.
Keywords: Hessenberg variety, flag variety, Schubert variety, Richardson variety, permutohedral variety, volume polynomials, Gelfand–Zetlin polytope
Mots-clés : Young tableaux.
@article{TM_2019_305_a18,
     author = {Megumi Harada and Tatsuya Horiguchi and Mikiya Masuda and Seonjeong Park},
     title = {The {Volume} {Polynomial} of {Regular} {Semisimple} {Hessenberg} {Varieties} and the {Gelfand--Zetlin} {Polytope}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {344--373},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a18/}
}
TY  - JOUR
AU  - Megumi Harada
AU  - Tatsuya Horiguchi
AU  - Mikiya Masuda
AU  - Seonjeong Park
TI  - The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 344
EP  - 373
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a18/
LA  - ru
ID  - TM_2019_305_a18
ER  - 
%0 Journal Article
%A Megumi Harada
%A Tatsuya Horiguchi
%A Mikiya Masuda
%A Seonjeong Park
%T The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 344-373
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a18/
%G ru
%F TM_2019_305_a18
Megumi Harada; Tatsuya Horiguchi; Mikiya Masuda; Seonjeong Park. The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand--Zetlin Polytope. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 344-373. http://geodesic.mathdoc.fr/item/TM_2019_305_a18/

[1] Abe H., DeDieu L., Galetto F., Harada M., “Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies”, Sel. math. New Ser., 24:3 (2018), 2129–2163 | DOI | Zbl

[2] Abe T., Horiguchi T., Masuda M., Murai S., Sato T., “Hessenberg varieties and hyperplane arrangements”, J. reine angew. Math., 2019 ; arXiv: 1611.00269 [math.AG] | DOI

[3] Anderson D., Tymoczko J., “Schubert polynomials and classes of Hessenberg varieties”, J. Algebra, 323:10 (2010), 2605–2623 | DOI | Zbl

[4] Ayzenberg A., Masuda M., “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381 | DOI | Zbl

[5] Brion M., “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties: Impanga lecture notes, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI

[6] Brosnan P., Chow T.Y., “Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties”, Adv. Math., 329 (2018), 955–1001 | DOI | Zbl

[7] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | Zbl

[8] Fulton W., Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | Zbl

[9] Guay-Paquet M., A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, E-print, 2016, arXiv: 1601.05498 [math.CO]

[10] Harada M., Precup M., “The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture”, J. Algebr. Comb. (to appear)

[11] Kaji S., Maple script for equivariant cohomology of flag manifolds, 2016 https://github.com/shizuo-kaji/Maple-flag-cohomology

[12] Kaveh K., “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164:13 (2015), 2461–2506 | DOI | Zbl

[13] Kaveh K., Khovanskii A., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | Zbl

[14] Kiritchenko V., “Gelfand–Zetlin polytopes and flag varieties”, Int. Math. Res. Not., 2010:13 (2010), 2512–2531 | Zbl

[15] V. A. Kirichenko, E. Yu. Smirnov, and V. A. Timorin, “Schubert calculus and Gelfand–Zetlin polytopes”, Russ. Math. Surv., 67:4 (2012), 685–719 | DOI | DOI | Zbl

[16] Kogan M., Schubert geometry of flag varieties and Gelfand–Cetlin theory, PhD Thesis, Mass. Inst. Technol., Cambridge, 2000

[17] Lee E., Masuda M., Park S., Toric Bruhat interval polytopes, E-print, 2019, arXiv: 1904.10187 [math.CO]

[18] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | DOI | DOI | Zbl

[19] Monk D., “The geometry of flag manifolds”, Proc. London Math. Soc. Ser. 3, 9 (1959), 253–286 | DOI | Zbl

[20] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | Zbl

[21] Shareshian J., Wachs M.L., “Chromatic quasisymmetric functions”, Adv. Math., 295 (2016), 497–551 | DOI | Zbl

[22] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | Zbl