Mots-clés : Young tableaux.
@article{TM_2019_305_a18,
author = {Megumi Harada and Tatsuya Horiguchi and Mikiya Masuda and Seonjeong Park},
title = {The {Volume} {Polynomial} of {Regular} {Semisimple} {Hessenberg} {Varieties} and the {Gelfand{\textendash}Zetlin} {Polytope}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {344--373},
year = {2019},
volume = {305},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a18/}
}
TY - JOUR AU - Megumi Harada AU - Tatsuya Horiguchi AU - Mikiya Masuda AU - Seonjeong Park TI - The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand–Zetlin Polytope JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 344 EP - 373 VL - 305 UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a18/ LA - ru ID - TM_2019_305_a18 ER -
%0 Journal Article %A Megumi Harada %A Tatsuya Horiguchi %A Mikiya Masuda %A Seonjeong Park %T The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand–Zetlin Polytope %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 344-373 %V 305 %U http://geodesic.mathdoc.fr/item/TM_2019_305_a18/ %G ru %F TM_2019_305_a18
Megumi Harada; Tatsuya Horiguchi; Mikiya Masuda; Seonjeong Park. The Volume Polynomial of Regular Semisimple Hessenberg Varieties and the Gelfand–Zetlin Polytope. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 344-373. http://geodesic.mathdoc.fr/item/TM_2019_305_a18/
[1] Abe H., DeDieu L., Galetto F., Harada M., “Geometry of Hessenberg varieties with applications to Newton–Okounkov bodies”, Sel. math. New Ser., 24:3 (2018), 2129–2163 | DOI | Zbl
[2] Abe T., Horiguchi T., Masuda M., Murai S., Sato T., “Hessenberg varieties and hyperplane arrangements”, J. reine angew. Math., 2019 ; arXiv: 1611.00269 [math.AG] | DOI
[3] Anderson D., Tymoczko J., “Schubert polynomials and classes of Hessenberg varieties”, J. Algebra, 323:10 (2010), 2605–2623 | DOI | Zbl
[4] Ayzenberg A., Masuda M., “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381 | DOI | Zbl
[5] Brion M., “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties: Impanga lecture notes, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI
[6] Brosnan P., Chow T.Y., “Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties”, Adv. Math., 329 (2018), 955–1001 | DOI | Zbl
[7] De Mari F., Procesi C., Shayman M.A., “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534 | DOI | Zbl
[8] Fulton W., Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | Zbl
[9] Guay-Paquet M., A second proof of the Shareshian–Wachs conjecture, by way of a new Hopf algebra, E-print, 2016, arXiv: 1601.05498 [math.CO]
[10] Harada M., Precup M., “The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture”, J. Algebr. Comb. (to appear)
[11] Kaji S., Maple script for equivariant cohomology of flag manifolds, 2016 https://github.com/shizuo-kaji/Maple-flag-cohomology
[12] Kaveh K., “Crystal bases and Newton–Okounkov bodies”, Duke Math. J., 164:13 (2015), 2461–2506 | DOI | Zbl
[13] Kaveh K., Khovanskii A., “Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory”, Ann. Math. Ser. 2, 176:2 (2012), 925–978 | DOI | Zbl
[14] Kiritchenko V., “Gelfand–Zetlin polytopes and flag varieties”, Int. Math. Res. Not., 2010:13 (2010), 2512–2531 | Zbl
[15] V. A. Kirichenko, E. Yu. Smirnov, and V. A. Timorin, “Schubert calculus and Gelfand–Zetlin polytopes”, Russ. Math. Surv., 67:4 (2012), 685–719 | DOI | DOI | Zbl
[16] Kogan M., Schubert geometry of flag varieties and Gelfand–Cetlin theory, PhD Thesis, Mass. Inst. Technol., Cambridge, 2000
[17] Lee E., Masuda M., Park S., Toric Bruhat interval polytopes, E-print, 2019, arXiv: 1904.10187 [math.CO]
[18] M. Masuda and T. E. Panov, “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199:8 (2008), 1201–1223 | DOI | DOI | Zbl
[19] Monk D., “The geometry of flag manifolds”, Proc. London Math. Soc. Ser. 3, 9 (1959), 253–286 | DOI | Zbl
[20] Postnikov A., “Permutohedra, associahedra, and beyond”, Int. Math. Res. Not., 2009:6 (2009), 1026–1106 | DOI | Zbl
[21] Shareshian J., Wachs M.L., “Chromatic quasisymmetric functions”, Adv. Math., 295 (2016), 497–551 | DOI | Zbl
[22] Ziegler G.M., Lectures on polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | Zbl