Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a17, author = {A. V. Ustinov}, title = {An {Elementary} {Approach} to the {Study} of {Somos} {Sequences}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {330--343}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a17/} }
A. V. Ustinov. An Elementary Approach to the Study of Somos Sequences. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 330-343. http://geodesic.mathdoc.fr/item/TM_2019_305_a17/
[1] Alman J., Cuenca C., Huang J., “Laurent phenomenon sequences”, J. Algebr. Comb., 43:3 (2016), 589–633 | DOI | Zbl
[2] M. O. Avdeeva and V. A. Bykovskii, “Hyperelliptic systems of sequences and functions”, Dal'nevost. Mat. Zh., 16:2 (2016), 115–122 | Zbl
[3] V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203 | DOI | DOI | Zbl
[4] V. A. Bykovskii and A. V. Ustinov, “Somos-4 and elliptic systems of sequences”, Dokl. Math., 94:3 (2016), 611–614 | DOI | Zbl
[5] Fedorov Yu.N., Hone A.N.W., “Sigma-function solution to the general Somos-6 recurrence via hyperelliptic Prym varieties”, J. Integrable Syst., 1:1 (2016), xyw012 | DOI | Zbl
[6] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. Appl. Math., 28:2 (2002), 119–144 | DOI | Zbl
[7] Gale D., Tracking the automatic ant and other mathematical explorations: A collection of mathematical entertainments columns from the Mathematical Intelligencer, Springer, New York, 1998 | Zbl
[8] Hone A.N.W., “Elliptic curves and quadratic recurrence sequences”, Bull. London Math. Soc., 37:2 (2005), 161–171 | DOI | Zbl
[9] Hone A.N.W., “Sigma function solution of the initial value problem for Somos 5 sequences”, Trans. Amer. Math. Soc., 359:10 (2007), 5019–5034 | DOI | Zbl
[10] Hone A.N.W., “Analytic solutions and integrability for bilinear recurrences of order six”, Appl. Anal., 89:4 (2010), 473–492 | DOI | Zbl
[11] Hone A.N.W., Swart C., “Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences”, Math. Proc. Cambridge Philos. Soc., 145:1 (2008), 65–85 | DOI | Zbl
[12] A. A. Illarionov, “Functional equations and Weierstrass sigma-functions”, Funct. Anal. Appl., 50:4 (2016), 281–290 | DOI | DOI | Zbl
[13] A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299, 2017, 96–108 | DOI | DOI | Zbl
[14] A. A. Illarionov and M. A. Romanov, “On the connection between hyperelliptic systems of sequences and functions”, Dal'nevost. Mat. Zh., 17:2 (2017), 210–220 | Zbl
[15] Ma X., “Magic determinants of Somos sequences and theta functions”, Discrete Math., 310:1 (2010), 1–5 | DOI
[16] Van der Poorten A.J., Swart C.S., “Recurrence relations for elliptic sequences: every Somos 4 is a Somos $k$”, Bull. London Math. Soc., 38:4 (2006), 546–554 | DOI | Zbl
[17] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover, New York, 1990 | Zbl
[18] Rochberg R., Rubel L.A., “A functional equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | Zbl
[19] Somos M., Step into the Elliptic Realm, Preprint, 2000 https://www.cut-the-knot.org/arithmetic/algebra/EllipticSeq.shtml
[20] Swart C.S., Elliptic curves and related sequences, PhD Thesis, R. Holloway and Bedford New Coll., Univ. London, Egham, 2003
[21] F. G. Tricomi, Integral Equations, Interscience, New York, 1957 | Zbl
[22] Ward M., “Memoir on elliptic divisibility sequences”, Amer. J. Math., 70:1 (1948), 31–74 | DOI | Zbl
[23] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Univ. Press, Cambridge, 1927 | Zbl