Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a13, author = {Masashi Noji and Kazuaki Ogiwara}, title = {The {Smooth} {Torus} {Orbit} {Closures} in the {Grassmannians}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {271--282}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a13/} }
TY - JOUR AU - Masashi Noji AU - Kazuaki Ogiwara TI - The Smooth Torus Orbit Closures in the Grassmannians JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 271 EP - 282 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a13/ LA - ru ID - TM_2019_305_a13 ER -
Masashi Noji; Kazuaki Ogiwara. The Smooth Torus Orbit Closures in the Grassmannians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282. http://geodesic.mathdoc.fr/item/TM_2019_305_a13/
[1] Aomoto K., “Les équations aux différences linéaires et les intégrales des fonctions multiformes”, J. Fac. Sci., Univ. Tokyo, Sect. IA: Math., 22 (1975), 271–297 | Zbl
[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb C P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | Zbl
[3] Buchstaber V.M., Terzić S., Toric topology of the complex Grassmann manifolds, E-print, 2018, arXiv: 1802.06449 [math.AT]
[4] I. M. Gel'fand, “General theory of hypergeometric functions”, Sov. Math., Dokl., 33 (1986), 573–577 | Zbl
[5] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | Zbl
[6] Gelfand I.M., MacPherson R.D., “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44 (1982), 279–312 | DOI | Zbl
[7] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | Zbl | Zbl
[8] Lee E., Masuda M., Generic torus orbit closures in Schubert varieties, E-print, 2018, arXiv: 1807.02904 [math.CO]
[9] Yu L., Masuda M., On descriptions of products of simplices, E-print, 2016, arXiv: 1609.05761 [math.AT]