The Smooth Torus Orbit Closures in the Grassmannians
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is known that for the natural algebraic torus actions on the Grassmannians, the closures of torus orbits are normal and hence are toric varieties, and that these toric varieties are smooth if and only if the corresponding matroid polytopes are simple. We prove that simple matroid polytopes are products of simplices and that smooth torus orbit closures in the Grassmannians are products of complex projective spaces. Moreover, it turns out that the smooth torus orbit closures are uniquely determined by the corresponding simple matroid polytopes.
Keywords: Toric variety, Grassmannian, torus orbit closure, matroid polytope
Mots-clés : bipartite graph.
@article{TM_2019_305_a13,
     author = {Masashi Noji and Kazuaki Ogiwara},
     title = {The {Smooth} {Torus} {Orbit} {Closures} in the {Grassmannians}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--282},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a13/}
}
TY  - JOUR
AU  - Masashi Noji
AU  - Kazuaki Ogiwara
TI  - The Smooth Torus Orbit Closures in the Grassmannians
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 271
EP  - 282
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a13/
LA  - ru
ID  - TM_2019_305_a13
ER  - 
%0 Journal Article
%A Masashi Noji
%A Kazuaki Ogiwara
%T The Smooth Torus Orbit Closures in the Grassmannians
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 271-282
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a13/
%G ru
%F TM_2019_305_a13
Masashi Noji; Kazuaki Ogiwara. The Smooth Torus Orbit Closures in the Grassmannians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282. http://geodesic.mathdoc.fr/item/TM_2019_305_a13/

[1] Aomoto K., “Les équations aux différences linéaires et les intégrales des fonctions multiformes”, J. Fac. Sci., Univ. Tokyo, Sect. IA: Math., 22 (1975), 271–297 | Zbl

[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb C P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | Zbl

[3] Buchstaber V.M., Terzić S., Toric topology of the complex Grassmann manifolds, E-print, 2018, arXiv: 1802.06449 [math.AT]

[4] I. M. Gel'fand, “General theory of hypergeometric functions”, Sov. Math., Dokl., 33 (1986), 573–577 | Zbl

[5] Gelfand I.M., Goresky R.M., MacPherson R.D., Serganova V.V., “Combinatorial geometries, convex polyhedra, and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | Zbl

[6] Gelfand I.M., MacPherson R.D., “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44 (1982), 279–312 | DOI | Zbl

[7] I. M. Gel'fand and V. V. Serganova, “Combinatorial geometries and torus strata on homogeneous compact manifolds”, Russ. Math. Surv., 42:2 (1987), 133–168 | DOI | Zbl | Zbl

[8] Lee E., Masuda M., Generic torus orbit closures in Schubert varieties, E-print, 2018, arXiv: 1807.02904 [math.CO]

[9] Yu L., Masuda M., On descriptions of products of simplices, E-print, 2016, arXiv: 1609.05761 [math.AT]