The Smooth Torus Orbit Closures in the Grassmannians
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that for the natural algebraic torus actions on the Grassmannians, the closures of torus orbits are normal and hence are toric varieties, and that these toric varieties are smooth if and only if the corresponding matroid polytopes are simple. We prove that simple matroid polytopes are products of simplices and that smooth torus orbit closures in the Grassmannians are products of complex projective spaces. Moreover, it turns out that the smooth torus orbit closures are uniquely determined by the corresponding simple matroid polytopes.
Keywords:
Toric variety, Grassmannian, torus orbit closure, matroid polytope
Mots-clés : bipartite graph.
Mots-clés : bipartite graph.
@article{TM_2019_305_a13,
author = {Masashi Noji and Kazuaki Ogiwara},
title = {The {Smooth} {Torus} {Orbit} {Closures} in the {Grassmannians}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {271--282},
publisher = {mathdoc},
volume = {305},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a13/}
}
TY - JOUR AU - Masashi Noji AU - Kazuaki Ogiwara TI - The Smooth Torus Orbit Closures in the Grassmannians JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 271 EP - 282 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a13/ LA - ru ID - TM_2019_305_a13 ER -
Masashi Noji; Kazuaki Ogiwara. The Smooth Torus Orbit Closures in the Grassmannians. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 271-282. http://geodesic.mathdoc.fr/item/TM_2019_305_a13/