Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a12, author = {Ilia I. Nekrasov and Gaiane Yu. Panina}, title = {Compactifications of $\mathcal M_{0,n}$ {Associated} with {Alexander} {Self-Dual} {Complexes:} {Chow} {Rings,} $\psi ${-Classes,} and {Intersection} {Numbers}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {250--270}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a12/} }
TY - JOUR AU - Ilia I. Nekrasov AU - Gaiane Yu. Panina TI - Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 250 EP - 270 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a12/ LA - ru ID - TM_2019_305_a12 ER -
%0 Journal Article %A Ilia I. Nekrasov %A Gaiane Yu. Panina %T Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 250-270 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a12/ %G ru %F TM_2019_305_a12
Ilia I. Nekrasov; Gaiane Yu. Panina. Compactifications of $\mathcal M_{0,n}$ Associated with Alexander Self-Dual Complexes: Chow Rings, $\psi $-Classes, and Intersection Numbers. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 250-270. http://geodesic.mathdoc.fr/item/TM_2019_305_a12/
[1] Agapito J., Godinho L., “Intersection numbers of polygon spaces”, Trans. Amer. Math. Soc., 361:9 (2009), 4969–4997 | DOI | Zbl
[2] Ceyhan Ö., “Chow groups of the moduli spaces of weighted pointed stable curves of genus zero”, Adv. Math., 221:6 (2009), 1964–1978 | DOI | Zbl
[3] Deligne P., Mumford D., “The irreducibility of the space of curves of given genus”, Publ. math. Inst. hautes étud. sci., 36 (1969), 75–109 | DOI | Zbl
[4] Fulton W., Intersection theory, Springer, Berlin, 1998 | Zbl
[5] Galashin P., Panina G., “Manifolds associated to simple games”, J. Knot Theory Ramifications, 25:12 (2016), 1642003 | DOI | Zbl
[6] Hassett B., “Moduli spaces of weighted pointed stable curves”, Adv. Math., 173:2 (2003), 316–352 | DOI | Zbl
[7] Hausmann J.-C., Knutson A., “The cohomology ring of polygon spaces”, Ann. Inst. Fourier, 48:1 (1998), 281–321 | DOI | Zbl
[8] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574 | Zbl
[9] Klyachko A.A., “Spatial polygons and stable configurations of points in the projective line”, Algebraic geometry and its applications, Aspects Math. E, 25, ed. by A. Tikhomirov, A. Tyurin, Vieweg, Braunschweig, 1994, 67–84 | DOI | Zbl
[10] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | Zbl
[11] Losev A., Manin Y., “New moduli spaces of pointed curves and pencils of flat connections”, Mich. Math. J., 48 (2000), 443–472 | DOI | Zbl
[12] Moon H.-B., Summers C., von Albade J., Xie R., “Birational contractions of $\overline {\mathrm M}_{0,n}$ and combinatorics of extremal assignments”, J. Algebr. Comb., 47:1 (2018), 51–90 ; arXiv: 1801.00785 [math.GT] | DOI | Zbl
[13] I. Nekrasov and G. Panina, “Geometric presentation for the cohomology ring of polygon spaces”, Algebra Anal., 31:1 (2019), 80–91 ; E-print, arXiv: 1801.00785 [math.GT]
[14] Von Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton Univ. Press, Princeton, NJ, 1944 | Zbl
[15] Smyth D.I., “Towards a classification of modular compactifications of $\mathcal M_{g,n}$”, Invent. math., 192:2 (2013), 459–503 | DOI | Zbl