Geometry of Central Extensions of Nilpotent Lie Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 225-249
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a recurrent and monotone method for constructing and classifying nilpotent Lie algebras by means of successive central extensions. The method consists in calculating the second cohomology $H^2(\mathfrak g,\mathbb K)$ of an extendable nilpotent Lie algebra $\mathfrak g$ followed by studying the geometry of the orbit space of the action of the automorphism group $\mathrm {Aut}(\mathfrak g)$ on Grassmannians of the form $\mathrm {Gr}(m,H^2(\mathfrak g,\mathbb K))$. In this case, it is necessary to take into account the filtered cohomology structure with respect to the ideals of the lower central series: a cocycle defining a central extension must have maximum filtration. Such a geometric method allows us to classify nilpotent Lie algebras of small dimensions, as well as to classify narrow naturally graded Lie algebras. We introduce the concept of a rigid central extension and construct examples of rigid and nonrigid central extensions.
Keywords:
central extension, rigid Lie algebra, naturally graded Lie algebra.
Mots-clés : automorphism, orbit of action
Mots-clés : automorphism, orbit of action
@article{TM_2019_305_a11,
author = {D. V. Millionshchikov and R. Jimenez},
title = {Geometry of {Central} {Extensions} of {Nilpotent} {Lie} {Algebras}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {225--249},
publisher = {mathdoc},
volume = {305},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a11/}
}
TY - JOUR AU - D. V. Millionshchikov AU - R. Jimenez TI - Geometry of Central Extensions of Nilpotent Lie Algebras JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 225 EP - 249 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a11/ LA - ru ID - TM_2019_305_a11 ER -
D. V. Millionshchikov; R. Jimenez. Geometry of Central Extensions of Nilpotent Lie Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 225-249. http://geodesic.mathdoc.fr/item/TM_2019_305_a11/