Geometry of Central Extensions of Nilpotent Lie Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 225-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a recurrent and monotone method for constructing and classifying nilpotent Lie algebras by means of successive central extensions. The method consists in calculating the second cohomology $H^2(\mathfrak g,\mathbb K)$ of an extendable nilpotent Lie algebra $\mathfrak g$ followed by studying the geometry of the orbit space of the action of the automorphism group $\mathrm {Aut}(\mathfrak g)$ on Grassmannians of the form $\mathrm {Gr}(m,H^2(\mathfrak g,\mathbb K))$. In this case, it is necessary to take into account the filtered cohomology structure with respect to the ideals of the lower central series: a cocycle defining a central extension must have maximum filtration. Such a geometric method allows us to classify nilpotent Lie algebras of small dimensions, as well as to classify narrow naturally graded Lie algebras. We introduce the concept of a rigid central extension and construct examples of rigid and nonrigid central extensions.
Keywords: central extension, rigid Lie algebra, naturally graded Lie algebra.
Mots-clés : automorphism, orbit of action
@article{TM_2019_305_a11,
     author = {D. V. Millionshchikov and R. Jimenez},
     title = {Geometry of {Central} {Extensions} of {Nilpotent} {Lie} {Algebras}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {225--249},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a11/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
AU  - R. Jimenez
TI  - Geometry of Central Extensions of Nilpotent Lie Algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 225
EP  - 249
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a11/
LA  - ru
ID  - TM_2019_305_a11
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%A R. Jimenez
%T Geometry of Central Extensions of Nilpotent Lie Algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 225-249
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a11/
%G ru
%F TM_2019_305_a11
D. V. Millionshchikov; R. Jimenez. Geometry of Central Extensions of Nilpotent Lie Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 225-249. http://geodesic.mathdoc.fr/item/TM_2019_305_a11/

[1] Barron T., Kerner D., Tvalavadze M., “On varieties of Lie algebras of maximal class”, Can. J. Math., 67:1 (2015), 55–89 | DOI | Zbl

[2] Buchstaber V.M., Terzić S., “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $\mathbb C P^5$”, Moscow Math. J., 16:2 (2016), 237–273 | DOI | Zbl

[3] Burde D., Steinhoff C., “Classification of orbit closures of 4-dimensional complex Lie algebras”, J. Algebra, 214:2 (1999), 729–739 | DOI | Zbl

[4] Carles R., Diakité Y., “Sur les variétés d'algèbres de Lie de dimension $\le 7$”, J. Algebra, 91:1 (1984), 53–63 | DOI | Zbl

[5] Dixmier J., “Cohomologie des algèbres de Lie nilpotentes”, Acta sci. math., 16 (1955), 246–250 | Zbl

[6] A. Fialowski, “Classification of graded Lie algebras with two generators”, Moscow Univ. Math. Bull., 38:2 (1983), 76–79 | Zbl

[7] A. Fialowski, “Deformations of Lie algebras”, Math. USSR, Sb., 55:2 (1986), 467–473 | DOI

[8] Fialowski A., “An example of formal deformations of Lie algebras”, Deformation theory of algebras and structures and applications (NATO Adv. Study Inst., Castelvecchio-Pascoli (Italy), 1986), NATO ASI Ser. C, 247, Kluwer, Dordrecht, 1988, 375–401

[9] Fialowski A., Penkava M., “Deformations of four-dimensional Lie algebras”, Commun. Contemp. Math., 9:1 (2007), 41–79 | DOI | Zbl

[10] Fialowski A., Penkava M., “The moduli space of complex 5-dimensional Lie algebras”, J. Algebra, 458 (2016), 422–444 | DOI | Zbl

[11] D. B. Fuchs, Cohomology of Infinite-Dimensional Lie Algebras, Nauka, Moscow, 1984 | Zbl

[12] Contemp. Sov. Math., Consultants Bureau, New York, 1986 | Zbl

[13] Galitski L.Yu., Timashev D.A., “On classification of metabelian Lie algebras”, J. Lie Theory, 9:1 (1999), 125–156 | Zbl

[14] Gauger M.A., “On the classification of metabelian Lie algebras”, Trans. Amer. Math. Soc., 179 (1973), 293–329 | DOI | Zbl

[15] Gómez J.R., Jimenéz-Merchán A., Khakimdjanov Y., “Low-dimensional filiform Lie algebras”, J. Pure Appl. Algebra, 130:2 (1998), 133–158 | DOI | Zbl

[16] V. V. Gorbatsevich, “On contractions and degeneracy of finite-dimensional algebras”, Sov. Math., 35:10 (1991), 17–24 | Zbl

[17] V. V. Gorbatsevich, “Some properties of the space of $n$-dimensional Lie algebras”, Sb. Math., 200:2 (2009), 185–213 | DOI | DOI | Zbl

[18] Goze M., Remm E., “$k$-Step nilpotent Lie algebras”, Georgian Math. J., 22:2 (2015), 219–234 | DOI | Zbl

[19] Grunewald F., O'Halloran J., “Varieties of nilpotent Lie algebras of dimension less than six”, J. Algebra, 112:2 (1988), 315–325 | DOI | Zbl

[20] Grunewald F., O'Halloran J., “Deformations of Lie algebras”, J. Algebra, 162:1 (1993), 210–224 | DOI | Zbl

[21] Herrera-Granada J.P., Tirao P., “The Grunewald–O'Halloran conjecture for nilpotent Lie algebras of rank $\ge 1$”, Commun. Algebra, 44:5 (2016), 2180–2192 | DOI | Zbl

[22] Kirillov A.A., Neretin Yu.A., “The variety $A_n$ of $n$-dimensional Lie algebra structures”, Amer. Math. Soc. Translations. Ser. 2, V. 137, Amer. Math. Soc., Providence, RI, 1987, 21–30

[23] Manivel L., “On the variety of four dimensional Lie algebras”, J. Lie Theory, 26:1 (2016), 1–10 | Zbl

[24] D. V. Millionshchikov, “Filiform $\mathbb N$-graded Lie algebras”, Russ. Math. Surv., 57:2 (2002), 422–424 | DOI | DOI | Zbl

[25] Millionshchikov D.V., “Graded filiform Lie algebras and symplectic nilmanifolds”, Geometry, topology, and mathematical physics: Selected papers from S.P. Novikov's seminar, Moscow, 2002–2003, AMS Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 259–279

[26] D. V. Millionshchikov, “Narrow positively graded Lie algebras”, Dokl. Math., 98:3 (2018), 626–628 | DOI | Zbl

[27] D. V. Millionshchikov, “Naturally graded Lie algebras of slow growth”, Sb. Math., 210:6 (2019), 862–909 | DOI | DOI | Zbl

[28] V. V. Morozov, “Classification of nilpotent Lie algebras of order six”, Izv. Vyssh. Uchebn. Zaved., Mat., 1958, no. 4, 161–171 | Zbl

[29] Yu. A. Neretin, “An estimate of the number of parameters defining an $n$-dimensional algebra”, Math. USSR, Izv., 30:2 (1988), 283–294 | DOI | Zbl | Zbl

[30] Vergne M., “Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes”, Bull. Soc. math. France, 98 (1970), 81–116 | DOI | Zbl