Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_305_a10, author = {G. S. Mauleshova and A. E. Mironov}, title = {Difference {Krichever--Novikov} {Operators} of {Rank~2}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {211--224}, publisher = {mathdoc}, volume = {305}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a10/} }
TY - JOUR AU - G. S. Mauleshova AU - A. E. Mironov TI - Difference Krichever--Novikov Operators of Rank~2 JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 211 EP - 224 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a10/ LA - ru ID - TM_2019_305_a10 ER -
G. S. Mauleshova; A. E. Mironov. Difference Krichever--Novikov Operators of Rank~2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 211-224. http://geodesic.mathdoc.fr/item/TM_2019_305_a10/
[1] V. N. Davletshina, “On self-adjoint commuting differential operators of rank two”, Sib. Elektron. Mat. Izv., 10 (2013), 109–112 | Zbl
[2] Dixmier J., “Sur les algèbres de Weyl”, Bull. Soc. math. France, 96 (1968), 209–242 | DOI | Zbl
[3] I. M. Krichever, “Algebraic curves and non-linear difference equations”, Russ. Math. Surv., 33:4 (1978), 255–256 | DOI | Zbl | Zbl
[4] I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Russ. Math. Surv., 35:6 (1980), 53–79 | DOI | Zbl | Zbl
[5] I. M. Krichever and S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russ. Math. Surv., 58:3 (2003), 473–510 | DOI | DOI | Zbl
[6] G. S. Mauleshova and A. E. Mironov, “Commuting difference operators of rank two”, Russ. Math. Surv., 70:3 (2015), 557–559 | DOI | DOI | Zbl
[7] A. E. Mironov, “Discrete analogues of Dixmier operators”, Sb. Math., 198:10 (2007), 1433–1442 | DOI | DOI | Zbl
[8] A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russ. Math. Surv., 71:4 (2016), 751–779 | DOI | DOI | Zbl
[9] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations”, Proc. Int. Symp. on Algebraic Geometry (Kyoto, 1977), Kinokuniya, Tokyo, 1978, 115–153
[10] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | Zbl