Difference Krichever--Novikov Operators of Rank~2
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 211-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of one-point commuting difference operators of rank $2$. In the case of hyperelliptic spectral curves, we obtain equations equivalent to the Krichever–Novikov equations for the discrete dynamics of the Tyurin parameters. Using these equations, we construct examples of operators corresponding to hyperelliptic spectral curves of arbitrary genus.
Keywords: commuting difference operators.
@article{TM_2019_305_a10,
     author = {G. S. Mauleshova and A. E. Mironov},
     title = {Difference {Krichever--Novikov} {Operators} of {Rank~2}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--224},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a10/}
}
TY  - JOUR
AU  - G. S. Mauleshova
AU  - A. E. Mironov
TI  - Difference Krichever--Novikov Operators of Rank~2
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 211
EP  - 224
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a10/
LA  - ru
ID  - TM_2019_305_a10
ER  - 
%0 Journal Article
%A G. S. Mauleshova
%A A. E. Mironov
%T Difference Krichever--Novikov Operators of Rank~2
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 211-224
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a10/
%G ru
%F TM_2019_305_a10
G. S. Mauleshova; A. E. Mironov. Difference Krichever--Novikov Operators of Rank~2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 211-224. http://geodesic.mathdoc.fr/item/TM_2019_305_a10/

[1] V. N. Davletshina, “On self-adjoint commuting differential operators of rank two”, Sib. Elektron. Mat. Izv., 10 (2013), 109–112 | Zbl

[2] Dixmier J., “Sur les algèbres de Weyl”, Bull. Soc. math. France, 96 (1968), 209–242 | DOI | Zbl

[3] I. M. Krichever, “Algebraic curves and non-linear difference equations”, Russ. Math. Surv., 33:4 (1978), 255–256 | DOI | Zbl | Zbl

[4] I. M. Krichever and S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Russ. Math. Surv., 35:6 (1980), 53–79 | DOI | Zbl | Zbl

[5] I. M. Krichever and S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russ. Math. Surv., 58:3 (2003), 473–510 | DOI | DOI | Zbl

[6] G. S. Mauleshova and A. E. Mironov, “Commuting difference operators of rank two”, Russ. Math. Surv., 70:3 (2015), 557–559 | DOI | DOI | Zbl

[7] A. E. Mironov, “Discrete analogues of Dixmier operators”, Sb. Math., 198:10 (2007), 1433–1442 | DOI | DOI | Zbl

[8] A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russ. Math. Surv., 71:4 (2016), 751–779 | DOI | DOI | Zbl

[9] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg–de Vries equation and related non-linear equations”, Proc. Int. Symp. on Algebraic Geometry (Kyoto, 1977), Kinokuniya, Tokyo, 1978, 115–153

[10] Yamilov R., “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | Zbl