On Addition Theorems Related to Elliptic Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 29-39
Voir la notice de l'article provenant de la source Math-Net.Ru
We present formulas for the components of the Buchstaber formal group law and its exponent over $\mathbb Q[p_1,p_2,p_3,p_4]$. This leads to an addition theorem for the general elliptic integral $\int _0^x dt/R(t)$ with $R(t)=\sqrt {1+p_1t+p_2t^2+p_3t^3+p_4t^4}$. The study is motivated by Euler's addition theorem for elliptic integrals of the first kind.
Keywords:
addition theorem, formal group law.
Mots-clés : complex elliptic genus
Mots-clés : complex elliptic genus
@article{TM_2019_305_a1,
author = {Malkhaz Bakuradze and Vladimir V. Vershinin},
title = {On {Addition} {Theorems} {Related} to {Elliptic} {Integrals}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {29--39},
publisher = {mathdoc},
volume = {305},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a1/}
}
TY - JOUR AU - Malkhaz Bakuradze AU - Vladimir V. Vershinin TI - On Addition Theorems Related to Elliptic Integrals JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 29 EP - 39 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a1/ LA - ru ID - TM_2019_305_a1 ER -
Malkhaz Bakuradze; Vladimir V. Vershinin. On Addition Theorems Related to Elliptic Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 29-39. http://geodesic.mathdoc.fr/item/TM_2019_305_a1/