On Addition Theorems Related to Elliptic Integrals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 29-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We present formulas for the components of the Buchstaber formal group law and its exponent over $\mathbb Q[p_1,p_2,p_3,p_4]$. This leads to an addition theorem for the general elliptic integral $\int _0^x dt/R(t)$ with $R(t)=\sqrt {1+p_1t+p_2t^2+p_3t^3+p_4t^4}$. The study is motivated by Euler's addition theorem for elliptic integrals of the first kind.
Keywords: addition theorem, formal group law.
Mots-clés : complex elliptic genus
@article{TM_2019_305_a1,
     author = {Malkhaz Bakuradze and Vladimir V. Vershinin},
     title = {On {Addition} {Theorems} {Related} to {Elliptic} {Integrals}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a1/}
}
TY  - JOUR
AU  - Malkhaz Bakuradze
AU  - Vladimir V. Vershinin
TI  - On Addition Theorems Related to Elliptic Integrals
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 29
EP  - 39
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a1/
LA  - ru
ID  - TM_2019_305_a1
ER  - 
%0 Journal Article
%A Malkhaz Bakuradze
%A Vladimir V. Vershinin
%T On Addition Theorems Related to Elliptic Integrals
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 29-39
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a1/
%G ru
%F TM_2019_305_a1
Malkhaz Bakuradze; Vladimir V. Vershinin. On Addition Theorems Related to Elliptic Integrals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 29-39. http://geodesic.mathdoc.fr/item/TM_2019_305_a1/