Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex $\mathcal Z_\mathcal K$. Namely, we say that a simplicial complex $\mathcal K$ realises an iterated higher Whitehead product $w$ if $w$ is a nontrivial element of $\pi _*(\mathcal Z_\mathcal K)$. The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product $w$ we describe a simplicial complex $\partial \Delta _w$ that realises $w$. Furthermore, for a particular form of brackets inside $w$, we prove that $\partial \Delta _w$ is the smallest complex that realises $w$. We also give a combinatorial criterion for the nontriviality of the product $w$. In the proof of nontriviality we use the Hurewicz image of $w$ in the cellular chains of $\mathcal Z_\mathcal K$ and the description of the cohomology product of $\mathcal Z_\mathcal K$. The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of $\mathcal K$ to describe the canonical cycles corresponding to iterated higher Whitehead products $w$. This gives another criterion for realisability of $w$.
@article{TM_2019_305_a0,
author = {Semyon A. Abramyan and Taras E. Panov},
title = {Higher {Whitehead} {Products} in {Moment--Angle} {Complexes} and {Substitution} of {Simplicial} {Complexes}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {7--28},
publisher = {mathdoc},
volume = {305},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a0/}
}
TY - JOUR AU - Semyon A. Abramyan AU - Taras E. Panov TI - Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 7 EP - 28 VL - 305 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_305_a0/ LA - ru ID - TM_2019_305_a0 ER -
%0 Journal Article %A Semyon A. Abramyan %A Taras E. Panov %T Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 7-28 %V 305 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_305_a0/ %G ru %F TM_2019_305_a0
Semyon A. Abramyan; Taras E. Panov. Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28. http://geodesic.mathdoc.fr/item/TM_2019_305_a0/