Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex $\mathcal Z_\mathcal K$. Namely, we say that a simplicial complex $\mathcal K$ realises an iterated higher Whitehead product $w$ if $w$ is a nontrivial element of $\pi _*(\mathcal Z_\mathcal K)$. The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product $w$ we describe a simplicial complex $\partial \Delta _w$ that realises $w$. Furthermore, for a particular form of brackets inside $w$, we prove that $\partial \Delta _w$ is the smallest complex that realises $w$. We also give a combinatorial criterion for the nontriviality of the product $w$. In the proof of nontriviality we use the Hurewicz image of $w$ in the cellular chains of $\mathcal Z_\mathcal K$ and the description of the cohomology product of $\mathcal Z_\mathcal K$. The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of $\mathcal K$ to describe the canonical cycles corresponding to iterated higher Whitehead products $w$. This gives another criterion for realisability of $w$.
@article{TM_2019_305_a0,
     author = {Semyon A. Abramyan and Taras E. Panov},
     title = {Higher {Whitehead} {Products} in {Moment--Angle} {Complexes} and {Substitution} of {Simplicial} {Complexes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--28},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a0/}
}
TY  - JOUR
AU  - Semyon A. Abramyan
AU  - Taras E. Panov
TI  - Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 7
EP  - 28
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a0/
LA  - ru
ID  - TM_2019_305_a0
ER  - 
%0 Journal Article
%A Semyon A. Abramyan
%A Taras E. Panov
%T Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 7-28
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a0/
%G ru
%F TM_2019_305_a0
Semyon A. Abramyan; Taras E. Panov. Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28. http://geodesic.mathdoc.fr/item/TM_2019_305_a0/

[1] S. A. Abramyan, “Iterated higher Whitehead products in topology of moment–angle complexes”, Sib. Math. J., 60:2 (2019), 185–196 | DOI | MR | Zbl

[2] A. A. Ayzenberg, “Substitutions of polytopes and of simplicial complexes, and multigraded Betti numbers”, Trans. Moscow Math. Soc., 2013 (2013), 175–202 | MR | Zbl

[3] Ayzenberg A., “Buchstaber invariant, minimal non-simplices and related”, Osaka J. Math., 53:2 (2016), 377–395 | MR | Zbl

[4] Bahri A., Bendersky M., Cohen F.R., Gitler S., “Operations on polyhedral products and a new topological construction of infinite families of toric manifolds”, Homology Homotopy Appl., 17:2 (2015), 137–160 ; arXiv: 1011.0094 [math.AT] | DOI | MR | Zbl

[5] I. V. Baskakov, V. M. Bukhshtaber, and T. E. Panov, “Cellular cochain algebras and torus actions”, Russ. Math. Surv., 59:3 (2004), 562–563 | DOI | DOI | MR | Zbl

[6] V. M. Buchstaber and T. E. Panov, “Torus actions, combinatorial topology, and homological algebra”, Russ. Math. Surv., 55:5 (2000), 825–921 | DOI | DOI | MR | Zbl

[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 ; Aizenbad D., Kommutativnaya algebra s pritselom na algebraicheskuyu geometriyu, MTsNMO, M., 2017 | DOI | MR | Zbl

[8] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Grad. Texts Math., 150, Springer, New York, 1995 | DOI | MR | Zbl

[9] Grbić J., Panov T., Theriault S., Wu J., “The homotopy types of moment–angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[10] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | DOI | DOI | MR | Zbl

[11] Hardie K.A., “Higher Whitehead products”, Q. J. Math. Oxford. Ser. 2, 12 (1961), 241–249 | DOI | MR | Zbl

[12] Herzog J., Hibi T., Monomial ideals, Grad. Texts Math., 260, Springer, London, 2011 | MR | Zbl

[13] Iriye K., Kishimoto D., Polyhedral products for shifted complexes and higher Whitehead products, E-print, 2015, arXiv: 1505.04892 [math.AT] | MR | Zbl

[14] Iriye K., Kishimoto D., Whitehead products in moment–angle complexes, E-print, 2018, arXiv: 1807.00087 [math.AT]

[15] T. E. Panov, “Geometric structures on moment–angle manifolds”, Russ. Math. Surv., 68:3 (2013), 503–568 | DOI | DOI | MR | Zbl

[16] Panov T., Ray N., “Categorical aspects of toric topology”, Toric topology, Contemp. Math., 460, ed. by M. Harada et al., Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[17] Porter G.J., “Higher-order Whitehead products”, Topology, 3 (1965), 123–135 | DOI | MR | Zbl

[18] Wang X., Zheng Q., “The homology of simplicial complements and the cohomology of polyhedral products”, Forum math., 27:4 (2015), 2267–2299 | DOI | MR | Zbl

[19] Williams F.D., “Higher Samelson products”, J. Pure Appl. Algebra, 2 (1972), 249–260 | DOI | MR | Zbl