Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex $\mathcal Z_\mathcal K$. Namely, we say that a simplicial complex $\mathcal K$ realises an iterated higher Whitehead product $w$ if $w$ is a nontrivial element of $\pi _*(\mathcal Z_\mathcal K)$. The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product $w$ we describe a simplicial complex $\partial \Delta _w$ that realises $w$. Furthermore, for a particular form of brackets inside $w$, we prove that $\partial \Delta _w$ is the smallest complex that realises $w$. We also give a combinatorial criterion for the nontriviality of the product $w$. In the proof of nontriviality we use the Hurewicz image of $w$ in the cellular chains of $\mathcal Z_\mathcal K$ and the description of the cohomology product of $\mathcal Z_\mathcal K$. The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of $\mathcal K$ to describe the canonical cycles corresponding to iterated higher Whitehead products $w$. This gives another criterion for realisability of $w$.
@article{TM_2019_305_a0,
     author = {Semyon A. Abramyan and Taras E. Panov},
     title = {Higher {Whitehead} {Products} in {Moment--Angle} {Complexes} and {Substitution} of {Simplicial} {Complexes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--28},
     publisher = {mathdoc},
     volume = {305},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_305_a0/}
}
TY  - JOUR
AU  - Semyon A. Abramyan
AU  - Taras E. Panov
TI  - Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 7
EP  - 28
VL  - 305
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_305_a0/
LA  - ru
ID  - TM_2019_305_a0
ER  - 
%0 Journal Article
%A Semyon A. Abramyan
%A Taras E. Panov
%T Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 7-28
%V 305
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_305_a0/
%G ru
%F TM_2019_305_a0
Semyon A. Abramyan; Taras E. Panov. Higher Whitehead Products in Moment--Angle Complexes and Substitution of Simplicial Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, combinatorics, and mathematical physics, Tome 305 (2019), pp. 7-28. http://geodesic.mathdoc.fr/item/TM_2019_305_a0/