Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_304_a19, author = {E. N. Khailov and E. V. Grigorieva}, title = {On a {Third-Order} {Singular} {Arc} of {Optimal} {Control} in a {Minimization} {Problem} for a {Mathematical} {Model} of {Psoriasis} {Treatment}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {298--308}, publisher = {mathdoc}, volume = {304}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_304_a19/} }
TY - JOUR AU - E. N. Khailov AU - E. V. Grigorieva TI - On a Third-Order Singular Arc of Optimal Control in a Minimization Problem for a Mathematical Model of Psoriasis Treatment JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 298 EP - 308 VL - 304 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_304_a19/ LA - ru ID - TM_2019_304_a19 ER -
%0 Journal Article %A E. N. Khailov %A E. V. Grigorieva %T On a Third-Order Singular Arc of Optimal Control in a Minimization Problem for a Mathematical Model of Psoriasis Treatment %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 298-308 %V 304 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_304_a19/ %G ru %F TM_2019_304_a19
E. N. Khailov; E. V. Grigorieva. On a Third-Order Singular Arc of Optimal Control in a Minimization Problem for a Mathematical Model of Psoriasis Treatment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal control and differential equations, Tome 304 (2019), pp. 298-308. http://geodesic.mathdoc.fr/item/TM_2019_304_a19/
[1] Van den Berg H.A., Kiselev Yu.N., Kooijman S.A.L.M., Orlov M.V., “Optimal allocation between nutrient uptake and growth in a microbial trichome”, J. Math. Biol., 37:1 (1998), 28–48 | DOI | MR | Zbl
[2] Cao X., Datta A., Al Basir F., Roy P.K., “Fractional-order model of the disease psoriasis: A control based mathematical approach”, J. Syst. Sci. Complex., 29:6 (2016), 1565–1584 | DOI | MR | Zbl
[3] Chattopadhyay B., Hui N., “Immunopathogenesis in psoriasis through a density-type mathematical model”, WSEAS Trans. Math., 11:5 (2012), 440–450
[4] Datta A., Kesh D.K., Roy P.K., “Effect of CD4$^+$ T-cells and CD8$^+$ T-cells on psoriasis: A mathematical study”, Imhotep Math. Proc., 3:1 (2016), 1–11
[5] Datta A., Li X.-Z., Roy P.K., “Drug therapy between T-cells and DCs reduces the excess production of keratinocytes: Ausal effect of psoriasis”, Math. Sci. Int. Res. J., 3:1 (2014), 452–456
[6] Datta A., Roy P.K., “T-cell proliferation on immunopathogenic mechanism of psoriasis: A control based theoretical approach”, Control Cybern., 42:2 (2013), 365–386 | MR | Zbl
[7] Gandolfi A., Iannelli M., Marinoschi G., “An age-structured model of epidermis growth”, J. Math. Biol., 62:1 (2011), 111–141 | DOI | MR | Zbl
[8] Grabe N., Neuber K., “Simulating psoriasis by altering transit amplifying cells”, Bioinformatics, 23:11 (2007), 1309–1312 | DOI
[9] Grigor'eva E.V., Khailov E.N., “On chattering solutions for the maximum principle boundary-value problem in the optimal control problem in microeconomics”, Comput. Math. Model., 25:2 (2014), 158–168 | DOI | MR | Zbl
[10] Grigorieva E., Khailov E., Deignan P., “Optimal treatment strategies for control model of psoriasis”, Proc. SIAM Conf. on Control and Its Applications (CT17) (Pittsburgh, PA, USA, July 10–12, 2017), SIAM, Philadelphia, PA, 2017, 86–93 | DOI
[11] Gudjonsson J.E., Johnston A., Sigmundsdottir H., Valdimarsson H., “Immunopathogenic mechanisms in psoriasis”, Clin. Exp. Immunol., 135:1 (2004), 1–8 | DOI
[12] Joshi H.R., Lenhart S., Hota S., Agusto F., “Optimal control of an SIR model with changing behavior through an education campaign”, Electron. J. Diff. Eqns., 2015 (2015), 50 | DOI | MR
[13] Yu. N. Kiselev, M. V. Orlov, and S. M. Orlov, “Special modes in a two-sector economy model with an integral utility function”, Moscow Univ. Comput. Math. Cybern., 40:1 (2016), 10–18 | DOI | MR | Zbl
[14] Yu. N. Kiselev, M. V. Orlov, and S. M. Orlov, “Optimal modes in a multidimensional model of economic growth”, Moscow Univ. Comput. Math. Cybern., 41:2 (2017), 64–69 | DOI | MR | Zbl
[15] A. A. Kubanova, A. A. Kubanov, J. F. Nicolas, L. Puig, J. Prince, O. R. Katunina, and L. F. Znamenskaya, “Immune mechanisms of psoriasis: New strategies of biological therapy”, Vestn. Dermatol. Venerol., 2010, no. 1, 35–47
[16] M. V. Laptev and N. K. Nikulin, “Numerical modeling of mutual synchronization of auto-oscillations of epidermal proliferative activity in lesions of psoriatic skin”, Biophysics, 54:4 (2009), 519–524 | DOI
[17] Ledzewicz U., Schättler H., “On optimal singular controls for a general SIR-model with vaccination and treatment”, Discrete Contin. Dyn. Syst., 2011, no. Suppl., 981–990 | MR | Zbl
[18] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, J. Wiley Sons, New York, 1967 | MR | Zbl
[19] Lowes M.A., Suárez-Fariñas M., Krueger J.G., “Immunology of psoriasis”, Annu. Rev. Immunol., 32 (2014), 227–255 | DOI
[20] Mehlis S.L., Gordon K.B., “The immunology of psoriasis and biologic immunotherapy”, J. Amer. Acad. Dermatol., 49:2 (2003), 44–50 | DOI
[21] Oza H.B., Pandey R., Roper D., Al-Nuaimi Y., Spurgeon S.K., Goodfellow M., “Modelling and finite-time stability analysis of psoriasis pathogenesis”, Int. J. Control., 90:8 (2017), 1664–1677 | DOI | MR | Zbl
[22] De Pinho M.R., Kornienko I., Maurer H., “Optimal control of a SEIR model with mixed constraints and $L_1$ cost”, Proc. 11th Port. Conf. on Automatic Control, Controllo'2014, Lect. Notes Electr. Eng., 321, Springer, Cham, 2015, 135–145 | DOI
[23] PontryaginL. S., BoltyanskiiV. G., GamkrelidzeR. V., and MishchenkoE. F., The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964 | MR | MR
[24] Roy P.K., Bhadra J., Chattopadhyay B., “Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: A theoretical study”, Proc. World Congr. Eng. 2010, v. 1, Lect. Notes Eng. Comput. Sci., 2183, Newswood Limited, Hong Kong, 2010, 550–555
[25] Roy P.K., Datta A., “Negative feedback control may regulate cytokines effect during growth of keratinocytes in the chronic plaque of psoriasis: A mathematical study”, Int. J. Appl. Math., 25:2 (2012), 233–254 | MR | Zbl
[26] Roy P.K., Datta A., “Impact of cytokine release in psoriasis: a control based mathematical approach”, J. Nonlinear Evol. Eqns. Appl., 2013:3 (2013), 23–42 | MR | Zbl
[27] Savill N.J., “Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis”, Cell Prolif., 36:1 (2003), 1–26 | DOI
[28] Schättler H., Ledzewicz U., Geometric optimal control: Theory, methods and examples, Springer, New York, 2012 | MR | Zbl
[29] Schättler H., Ledzewicz U., Optimal control for mathematical models of cancer therapies: An application of geometric methods, Springer, New York, 2015 | MR | Zbl
[30] Valeyev N.V., Hundhausen C., Umezawa Y., Kotov N.V., Williams G., Clop A., Ainali C., Ouzounis G., Tsoka S., Nestle F.O., “A systems model for immune cell interactions unravels the mechanism of inflammation in human skin”, PLoS Comput. Biol., 6:12 (2010), e1001024 | DOI
[31] M. I. Zelikin and V. F. Borisov, “Regimes with increasingly more frequent switchings in optimal control problems”, Proc. Steklov Inst. Math., 190, 1992, 49–76 | MR
[32] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994 | MR | Zbl
[33] M. I. Zelikin and V. F. Borisov, “Synthesis of optimal controls with accumulation of switchings”, Optimal Control–4, Itogi Nauki Tekh., Sovrem Mat. Pril., Tematich. Obzory, 90, VINITI, Moscow, 2002, 5–189 | DOI | MR
[34] M. I. Zelikin and V. F. Borisov, J. Math. Sci., 114:3 (2003), 1227–1344 | DOI | MR
[35] M. I. Zelikin and V. F. Borisov, Singular Optimal Regimes in Problems of Mathematical Economics, Sovrem. Mat. Pril., 11, Inst. Kibern. Akad. Nauk Gruzii, Tbilisi, 2003 | DOI | MR
[36] M. I. Zelikin and V. F. Borisov, J. Math. Sci., 130:1 (2005), 4409–4570 | DOI | MR
[37] Zhang H., Hou W., Henrot L., Schnebert S., Dumas M., Heusèle C., Yang J., “Modelling epidermis homoeostasis and psoriasis pathogenesis”, J. R. Soc. Interface, 12 (2015), 20141071 | DOI