Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1939 P. Turán started to derive lower estimations on the norm of the derivatives of polynomials of (maximum) norm $1$ on $\mathbb I:=[-1,1]$ (interval) and $\mathbb D:=\{z\in \mathbb C: |z|\le 1\}$ (disk) under the normalization condition that the zeroes of the polynomial in question all lie in $\mathbb I$ or $\mathbb D$, respectively. For the maximum norm he found that with $n:=\deg p$ tending to infinity, the precise growth order of the minimal possible derivative norm is $\sqrt {n}$ for $\mathbb I$ and $n$ for $\mathbb D$. J. Erőd continued the work of Turán considering other domains. Finally, about a decade ago the growth of the minimal possible $\infty $-norm of the derivative was proved to be of order $n$ for all compact convex domains. Although Turán himself gave comments about the above oscillation question in $L^q$ norms, till recently results were known only for $\mathbb D$ and $\mathbb I$. Recently, we have found order $n$ lower estimations for several general classes of compact convex domains, and conjectured that even for arbitrary convex domains the growth order of this quantity should be $n$. Now we prove that in $L^q$ norm the oscillation order is at least $n/\kern -1pt\log n$ for all compact convex domains.
Keywords: Bernstein–Markov inequalities, Turán's lower estimate of derivative norm, logarithmic derivative, Chebyshev constant, transfinite diameter, capacity, minimal width
Mots-clés : convex domains, outer angle.
@article{TM_2018_303_a7,
     author = {P. Yu. Glazyrina and Sz. Gy. R\'ev\'esz},
     title = {Tur\'an--Er\H od type converse {Markov} inequalities on general convex domains of the plane in the boundary $L^q$ norm},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--115},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a7/}
}
TY  - JOUR
AU  - P. Yu. Glazyrina
AU  - Sz. Gy. Révész
TI  - Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 87
EP  - 115
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a7/
LA  - ru
ID  - TM_2018_303_a7
ER  - 
%0 Journal Article
%A P. Yu. Glazyrina
%A Sz. Gy. Révész
%T Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 87-115
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a7/
%G ru
%F TM_2018_303_a7
P. Yu. Glazyrina; Sz. Gy. Révész. Tur\'an--Er\H od type converse Markov inequalities on general convex domains of the plane in the boundary $L^q$ norm. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 87-115. http://geodesic.mathdoc.fr/item/TM_2018_303_a7/

[1] Akopyan R. R., “Turán's inequality in $H_2$ for algebraic polynomials with restrictions to their zeros”, East J. Approx., 6:1 (2000), 103–124 | MR | Zbl

[2] V. V. Arestov, “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR, Izv., 18:1 (1982), 1–17 | DOI | Zbl

[3] V. F. Babenko, S. A. Pichugov, “Inequalities for the derivatives of polynomials with real zeros”, Ukr. Math. J., 38:4 (1986), 347–351 | DOI | MR | Zbl

[4] V. F. Babenko, S. A. Pichugov, “An exact inequality for the derivative of a trigonometric polynomial having only real zeros”, Math. Notes, 39:3 (1986), 179–182 | DOI | MR | Zbl

[5] Bernstein S., Sur l'ordre de la meilleure approximation des fonctions continues par des polynomes de degré donné, Mém. Cl. Sci. Acad. R. Belg., 4, Hayez, Bruxelles, 1912

[6] S. N. Bernstein, “Author's comments”, Collected Works, v. 1, Constructive Theory of Functions (1905–1931), Izd. Akad. Nauk SSSR, M., 1952, 526–564 (in Russian) | MR

[7] Bojanov B., “Polynomial inequalities”, Open problems in approximation theory, Proc. Conf. (Voneshta Voda, Bulgaria, 1993), SCT Publ., Singapore, 1994, 25–42

[8] Bojanov B., “Turán's inequalities for trigonometric polynomials”, J. London Math. Soc. Ser. 2, 53:3 (1996), 539–550 | DOI | MR | Zbl

[9] Bonnesen T., Fenchel W., Theorie der konvexen Körper, Springer, Berlin, 1974 ; Theory of convex bodies, ID: BCS Associates, M., 1987 | MR | Zbl | MR | Zbl

[10] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts Math., 161, Springer, New York, 1995 | DOI | MR

[11] Dewan K. K., Singh N., Mir A., Bhat A., “Some inequalities for the polar derivative of a polynomial”, Southeast Asian Bull. Math., 34:1 (2010), 69–77 | MR | Zbl

[12] Erdélyi T., “Inequalities for exponential sums via interpolation and Turán-type reverse Markov inequalities”, Frontiers in interpolation and approximation, Dedicated to the memory of A. Sharma, eds. N. K. Govil et al., Chapman Hall/CRC, Boca Raton, FL, 2007, 119–144 | MR | Zbl

[13] Erőd J., “Bizonyos polinomok maximumának alsó korlátjáról”, Mat. Fiz. Lapok, 46 (1939), 58–82; “On the lower bound of the maximum of certain polynomials”, East J. Approx., 12:4 (2006), 477–501 | MR

[14] Glazyrina P. Yu., Révész Sz. Gy., “Turán type oscillation inequalities in $L^q$ norm on the boundary of convex domains”, Math. Inequal. Appl., 20:1 (2017), 149–180 | MR | Zbl

[15] Glazyrina P. Yu., Révész Sz. Gy., “Turán type converse Markov inequalities in $L^q$ on a generalized Erőd class of convex domains”, J. Approx. Theory, 221 (2017), 62–76 | DOI | MR | Zbl

[16] Yu. S. Goryacheva, An upper bound for the exact constant in the Turán inequality for a compact domain with rectifiable boundary, Master's thesis, Ural Fed. Univ., Yekaterinburg, 2018

[17] Korneichuk N. P., Ligun A. A., Babenko V. F., Extremal properties of polynomials and splines, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1996 | MR | Zbl

[18] Levenberg N., Poletsky E. A., “Reverse Markov inequality”, Ann. Acad. sci. Fenn. Math., 27:1 (2002), 173–182 ; “Об одном вопросе Д. И. Менделеева”, Избранные труды по теории непрерывных дробей и теории функций наименее уклоняющихся от нуля, Гостехиздат, М.–Л., 1948, 51–75 | MR | Zbl

[19] A. A. Markov, “On a question by D. I. Mendeleev”, Zap. Imp. Akad. Nauk, 62 (1890), 1–24; Selected Works on the Theory of Continued Fractions and the Theory of Functions Least Deviating from Zero, M.–L., Gostekhizdat, 1948, 51–75 (in Russian)

[20] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific, Singapore, 1994 | MR | Zbl

[21] Pólia G., Szegő G., Problems and theorems in analysis II: Theory of functions, zeros, polynomials, determinants, number theory, geometry, Springer, Berlin, 1998 | MR

[22] Ransford T., “Computation of logarithmic capacity”, Comput. Methods Funct. Theory, 10:2 (2010), 555–578 | DOI | MR | Zbl

[23] Révész Sz. Gy., Turán–Markov inequalities for convex domains on the plane, Preprint No 3, Alfréd Rényi Inst. Math., Budapest, 2004

[24] Révész Sz. Gy., “Turán type reverse Markov inequalities for compact convex sets”, J. Approx. Theory, 141:2 (2006), 162–173 | DOI | MR | Zbl

[25] Révész Sz. Gy., “On a paper of Erőd and Turán–Markov inequalities for non-flat convex domains”, East J. Approx., 12:4 (2006), 451–467 | MR

[26] Révész Sz. Gy., “Turán–Erőd type converse Markov inequalities for convex domains on the plane”, Complex analysis and applications '13, Proc. Int. Conf. (Sofia, Oct. 31–Nov. 2, 2013), Bulg. Acad. Sci., Inst. Math. Inform., Sofia, 2013, 252–281 | MR | Zbl

[27] Riesz M., “Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome”, Jahresber. Dtsch. Math.-Ver., 23 (1914), 354–368 ; Chebyshev P. L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, UMN, 1:2 (1946), 12–37 | Zbl | MR

[28] P. Tchébychew, “Théorie des mécanismes connus sous le nom de parallélogrammes. 1re partie”, Mém. Acad. Sci. Pétersb., 7 (1854), 539–568 | MR

[29] Turán P., “Über die Ableitung von Polynomen”, Compos. math., 7 (1939), 89–95 | MR

[30] I. Ya. Tyrygin, “Turán-type inequalities in certain integral metrics”, Ukr. Math. J., 40:2 (1988), 223–226 | DOI | MR

[31] I. Ya. Tyrygin, “The P. Turán inequalities in mixed integral metrics”, Dokl. Akad. Nauk Ukr. SSR, Ser. A, 1988, no. 9, 14–17 | MR | Zbl

[32] Underhill B., Varma A. K., “An extension of some inequalities of P. Erdős and P. Turán concerning algebraic polynomials”, Acta math. Hungar., 73:1–2 (1996), 1–28 | DOI | MR | Zbl

[33] Varma A. K., “Some inequalities of algebraic polynomials having real zeros”, Proc. Amer. Math. Soc., 75:2 (1979), 243–250 | DOI | MR | Zbl

[34] Varma A. K., “Some inequalities of algebraic polynomials having all zeros inside $[-1,1]$”, Proc. Amer. Math. Soc., 88:2 (1983), 227–233 | MR | Zbl

[35] Wang J. L., Zhou S. P., “The weighted Turán type inequality for generalised Jacobi weights”, Bull. Aust. Math. Soc., 66:2 (2002), 259–265 | DOI | MR | Zbl

[36] Webster R., Convexity, Oxford Univ. Press, Oxford, 1994 | MR | Zbl

[37] Zhou S., “On the Turán inequality in $L^p$-norm”, J. Hangzhou Univ., Nat. Sci. Ed., 11:1 (1984), 28–33 | MR

[38] Zhou S.-P., “An extension of the Turán inequality in $L^p$-space for $0

1$”, J. Math. Res. Expo., 6:2 (1986), 27–30 | MR

[39] Zhou S. P., “Some remarks on Turán's inequality”, J. Approx. Theory, 68:1 (1992), 45–48 | DOI | MR | Zbl

[40] Zhou S. P., “Some remarks on Turán's inequality. II”, J. Math. Anal. Appl., 180:1 (1993), 138–143 | DOI | MR | Zbl

[41] Zhou S. P., “Some remarks on Turán's inequality. III: The completion”, Anal. math., 21:4 (1995), 313–318 | DOI | MR | Zbl