Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_303_a6, author = {G. G. Gevorkyan}, title = {Uniqueness theorems for {Franklin} series}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {67--86}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a6/} }
G. G. Gevorkyan. Uniqueness theorems for Franklin series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 67-86. http://geodesic.mathdoc.fr/item/TM_2018_303_a6/
[1] F. G. Arutyunyan, “On series in the Haar system”, Dokl. Akad. Nauk Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl
[2] F. G. Arutyunyan, A. A. Talalyan, “Uniqueness of series in Haar and Walsh systems”, Izv. Akad. Nauk SSSR, Ser. Mat., 28:6 (1964), 1391–1408 | MR | Zbl
[3] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon, Oxford, 1964 | MR | Zbl
[4] Ciesielski Z., “Properties of the orthonormal Franklin system”, Stud. math., 23 (1963), 141–157 | DOI | MR | Zbl
[5] Ciesielski Z., “Properties of the orthonormal Franklin system. II”, Stud. math., 27 (1966), 289–323 | DOI | MR | Zbl
[6] Ciesielski Z., Kamont A., “Survey on the orthogonal Franklin system”, Approximation theory, DARBA, Sofia, 2002, 84–132 | MR | Zbl
[7] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Dtsch. Math.-Ver., 19 (1910), 104–112 | Zbl
[8] Franklin Ph., “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR | Zbl
[9] G. G. Gevorkyan, “Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$”, Math. Notes, 38:4 (1985), 796–802 | DOI | MR | Zbl
[10] G. G. Gevorkyan, “Some theorems on unconditional convergence and a majorant of Franklin series and their application to the spaces $\operatorname {Re}H_p$”, Proc. Steklov Inst. Math., 190 (1992), 49–76 | MR
[11] G. G. Gevorkyan, “On series with respect to the Franklin system”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR | Zbl
[12] G. G. Gevorkyan, “Uniqueness theorems for series in the Franklin system”, Math. Notes, 98:5 (2015), 847–851 | DOI | DOI | MR | Zbl
[13] G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Sb. Math., 207:12 (2016), 1650–1673 | DOI | DOI | MR | Zbl
[14] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822 | DOI | DOI | MR | Zbl
[15] G. G. Gevorkyan, “On uniqueness of series with respect to the Haar system”, Izv. Nats. Akad. Nauk Armen., Mat., 53:3 (2018), 3–10 | MR
[16] L. D. Gogoladze, “Boundedness of convergent mean multiple functional series”, Math. Notes, 34:6 (1983), 917–923 | DOI | MR | Zbl
[17] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | DOI | MR | Zbl
[18] Kozma G., Olevski A., Cantor uniqueness and multiplicity along subsequences, E-print, 2018, arXiv: 1804.06902v1 [math.CA]
[19] M. B. Petrovskaya, “Null series with respect to a Haar system and sets of uniqueness”, Izv. Akad. Nauk SSSR, Ser. Mat., 28:4 (1964), 773–798 | Zbl
[20] V. A. Skvortsov, “A Cantor-type theorem for the Haar system”, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 1964, no. 5, 3–6 | Zbl
[21] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR, Sb., 73:2 (1992), 517–534 | DOI | MR | Zbl | Zbl
[22] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Russ. Math. Surv., 19:1 (1964), 1–62 | DOI | MR | MR | Zbl
[23] Wronicz Z., “On a problem of Gevorkyan for the Franklin system”, Opusc. math., 36:5 (2016), 681–687 | DOI | MR | Zbl