Uniqueness theorems for Franklin series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 67-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple Franklin series are investigated that converge to zero everywhere except for one point (or several points). It is also proved that the one-point set (or a finite set) is a uniqueness set for Pringsheim convergent double series.
@article{TM_2018_303_a6,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for {Franklin} series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a6/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness theorems for Franklin series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 67
EP  - 86
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a6/
LA  - ru
ID  - TM_2018_303_a6
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness theorems for Franklin series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 67-86
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a6/
%G ru
%F TM_2018_303_a6
G. G. Gevorkyan. Uniqueness theorems for Franklin series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 67-86. http://geodesic.mathdoc.fr/item/TM_2018_303_a6/