Uniqueness theorems for Franklin series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 67-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple Franklin series are investigated that converge to zero everywhere except for one point (or several points). It is also proved that the one-point set (or a finite set) is a uniqueness set for Pringsheim convergent double series.
@article{TM_2018_303_a6,
     author = {G. G. Gevorkyan},
     title = {Uniqueness theorems for {Franklin} series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {67--86},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a6/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Uniqueness theorems for Franklin series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 67
EP  - 86
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a6/
LA  - ru
ID  - TM_2018_303_a6
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Uniqueness theorems for Franklin series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 67-86
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a6/
%G ru
%F TM_2018_303_a6
G. G. Gevorkyan. Uniqueness theorems for Franklin series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 67-86. http://geodesic.mathdoc.fr/item/TM_2018_303_a6/

[1] F. G. Arutyunyan, “On series in the Haar system”, Dokl. Akad. Nauk Arm. SSR, 42:3 (1966), 134–140 | MR | Zbl

[2] F. G. Arutyunyan, A. A. Talalyan, “Uniqueness of series in Haar and Walsh systems”, Izv. Akad. Nauk SSSR, Ser. Mat., 28:6 (1964), 1391–1408 | MR | Zbl

[3] N. K. Bary, A Treatise on Trigonometric Series, v. I, II, Pergamon, Oxford, 1964 | MR | Zbl

[4] Ciesielski Z., “Properties of the orthonormal Franklin system”, Stud. math., 23 (1963), 141–157 | DOI | MR | Zbl

[5] Ciesielski Z., “Properties of the orthonormal Franklin system. II”, Stud. math., 27 (1966), 289–323 | DOI | MR | Zbl

[6] Ciesielski Z., Kamont A., “Survey on the orthogonal Franklin system”, Approximation theory, DARBA, Sofia, 2002, 84–132 | MR | Zbl

[7] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahresber. Dtsch. Math.-Ver., 19 (1910), 104–112 | Zbl

[8] Franklin Ph., “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR | Zbl

[9] G. G. Gevorkyan, “Unboundedness of the shift operator with respect to the Franklin system in the space $L_1$”, Math. Notes, 38:4 (1985), 796–802 | DOI | MR | Zbl

[10] G. G. Gevorkyan, “Some theorems on unconditional convergence and a majorant of Franklin series and their application to the spaces $\operatorname {Re}H_p$”, Proc. Steklov Inst. Math., 190 (1992), 49–76 | MR

[11] G. G. Gevorkyan, “On series with respect to the Franklin system”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR | Zbl

[12] G. G. Gevorkyan, “Uniqueness theorems for series in the Franklin system”, Math. Notes, 98:5 (2015), 847–851 | DOI | DOI | MR | Zbl

[13] G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Sb. Math., 207:12 (2016), 1650–1673 | DOI | DOI | MR | Zbl

[14] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822 | DOI | DOI | MR | Zbl

[15] G. G. Gevorkyan, “On uniqueness of series with respect to the Haar system”, Izv. Nats. Akad. Nauk Armen., Mat., 53:3 (2018), 3–10 | MR

[16] L. D. Gogoladze, “Boundedness of convergent mean multiple functional series”, Math. Notes, 34:6 (1983), 917–923 | DOI | MR | Zbl

[17] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | DOI | MR | Zbl

[18] Kozma G., Olevski A., Cantor uniqueness and multiplicity along subsequences, E-print, 2018, arXiv: 1804.06902v1 [math.CA]

[19] M. B. Petrovskaya, “Null series with respect to a Haar system and sets of uniqueness”, Izv. Akad. Nauk SSSR, Ser. Mat., 28:4 (1964), 773–798 | Zbl

[20] V. A. Skvortsov, “A Cantor-type theorem for the Haar system”, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 1964, no. 5, 3–6 | Zbl

[21] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR, Sb., 73:2 (1992), 517–534 | DOI | MR | Zbl | Zbl

[22] P. L. Ul'yanov, “Solved and unsolved problems in the theory of trigonometric and orthogonal series”, Russ. Math. Surv., 19:1 (1964), 1–62 | DOI | MR | MR | Zbl

[23] Wronicz Z., “On a problem of Gevorkyan for the Franklin system”, Opusc. math., 36:5 (2016), 681–687 | DOI | MR | Zbl