Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_303_a5, author = {M. Z. Garaev}, title = {On distribution of elements of subgroups in arithmetic progressions modulo a prime}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {59--66}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a5/} }
TY - JOUR AU - M. Z. Garaev TI - On distribution of elements of subgroups in arithmetic progressions modulo a prime JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 59 EP - 66 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_303_a5/ LA - ru ID - TM_2018_303_a5 ER -
M. Z. Garaev. On distribution of elements of subgroups in arithmetic progressions modulo a prime. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 59-66. http://geodesic.mathdoc.fr/item/TM_2018_303_a5/
[1] Balog A., Broughan K. A., Shparlinski I. E., “On the number of solutions of exponential congruences”, Acta arith., 148:1 (2011), 93–103 | DOI | MR | Zbl
[2] Bourgain J., Konyagin S. V., Shparlinski I. E., “Product sets of rationals, multiplicative translates of subgroups in residue rings, and fixed points of the discrete logarithm”, Int. Math. Res. Not., 2008 (2008), rnn090 | MR | Zbl
[3] J. Bourgain, M. Z. Garaev, S. V. Konyagin, I. E. Shparlinski, “On congruences with products of variables from short intervals and applications”, Proc. Steklov Inst. Math., 280 (2013), 61–90 | DOI | MR | Zbl
[4] Cilleruelo J., Garaev M. Z., “Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications”, Math. Proc. Cambridge Philos. Soc., 160:3 (2016), 477–494 | DOI | MR | Zbl
[5] Cilleruelo J., Garaev M. Z., “The congruence $x^x\equiv \lambda \pmod p$”, Proc. Amer. Math. Soc., 144:6 (2016), 2411–2418 | DOI | MR | Zbl
[6] Konyagin S. V., Shparlinski I. E., Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[7] Kurlberg P., Luca F., Shparlinski I. E., “On the fixed points of the map $x\to x^x$ modulo a prime”, Math. Res. Lett., 22:1 (2015), 141–168 | DOI | MR | Zbl
[8] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl
[9] Murphy B., Rudnev M., Shkredov I. D., Shteinikov Yu. N., On the few products, many sums problem, E-print, 2017, arXiv: 1712.00410v1 [math.CO]
[10] Shkredov I. D., “Some new inequalities in additive combinatorics”, Moscow J. Comb. Number Theory, 3:3–4 (2013), 189–239 | MR | Zbl
[11] Yu. N. Shteinikov, “Estimates of trigonometric sums over subgroups and some of their applications”, Math. Notes, 98:4 (2015), 667–684 | DOI | DOI | MR | Zbl
[12] I. M. Vinogradov, An Introduction to the Theory of Numbers, Pergamon Press, London, 1955 | MR | MR