Estimates for character sums in finite fields of order $p^2$ and $p^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain nontrivial bounds on character sums over “boxes” of volume $p^{n(1/4+\varepsilon)}$ in finite fields of order $p^n$ for $n=2$ and $n=3$.
@article{TM_2018_303_a4,
     author = {M. R. Gabdullin},
     title = {Estimates for character sums in finite fields of order $p^2$ and $p^3$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--58},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a4/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - Estimates for character sums in finite fields of order $p^2$ and $p^3$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 45
EP  - 58
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a4/
LA  - ru
ID  - TM_2018_303_a4
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T Estimates for character sums in finite fields of order $p^2$ and $p^3$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 45-58
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a4/
%G ru
%F TM_2018_303_a4
M. R. Gabdullin. Estimates for character sums in finite fields of order $p^2$ and $p^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 45-58. http://geodesic.mathdoc.fr/item/TM_2018_303_a4/

[1] Banaszczyk W., “Inequalities for convex bodies and polar reciprocal lattices in $\boldsymbol R^n$”, Discrete Comput. Geom., 13:2 (1995), 217–231 | DOI | MR | Zbl

[2] Betke U., Henk M., Wills J. M., “Successive-minima-type inequalities”, Discrete Comput. Geom., 9:2 (1993), 165–175 | DOI | MR | Zbl

[3] Burgess D. A., “On character sums and primitive roots”, Proc. London Math. Soc. Ser. 3, 12 (1962), 179–192 | DOI | MR | Zbl

[4] Burgess D. A., “Character sums and primitive roots in finite fields”, Proc. London Math. Soc. Ser. 3, 17 (1967), 11–25 | DOI | MR | Zbl

[5] Chang M.-C., “On a question of Davenport and Lewis and new character sum bounds in finite fields”, Duke Math. J., 145:3 (2008), 409–442 | DOI | MR | Zbl

[6] Chang M.-C., “Burgess inequality in $\mathbb F_{p^2}$”, Geom. Funct. Anal., 19:4 (2009), 1001–1016 | DOI | MR | Zbl

[7] Davenport H., Lewis D. J., “Character sums and primitive roots in finite fields”, Rend. Circ. Mat. Palermo. Ser. 2, 12:2 (1963), 129–136 | DOI | MR | Zbl

[8] A. A. Karatsuba, “Character sums and primitive roots in finite fields”, Sov. Math., Dokl., 9 (1968), 755–757 | MR | Zbl

[9] A. A. Karatsuba, “Estimates of character sums”, Math. USSR, Izv., 4:1 (1970), 19–29 | DOI | MR

[10] Katz N. M., “An estimate for character sums”, J. Amer. Math. Soc., 2:2 (1989), 197–200 | DOI | MR

[11] S. V. Konyagin, “Estimates of character sums in finite fields”, Math. Notes, 88:4 (2010), 503–515 | DOI | DOI | MR | Zbl

[12] Schmidt W. M., Equations over finite fields: An elementary approach, Lect. Notes Math., 536, Springer, Berlin, 1976 | DOI | MR | Zbl

[13] Tao T., Vu V. H., Additive combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[14] Van der Corput J. G., “Verschärfung der Abschätzung beim Teilerproblem”, Math. Ann., 87:1–2 (1922), 39–65 | MR | Zbl

[15] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Interscience Publ., New York, 1954 | MR | MR | Zbl

[16] I. M. Vinogradov, “A new estimate of the function $\zeta (1+it)$”, Izv. Akad. Nauk SSSR, Ser. Mat., 22:2 (1958), 161–164 | MR | Zbl

[17] I. M. Vinogradov, Appendix 1 to the book: Hua Lo-Keng, The Method of Trigonometric Sums and Its Applications in Number Theory, Mir, M., 1964, 169–170 (in Russian)

[18] Weyl H., “Über die Gleichverteilung von Zahlen mod. Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[19] Weyl H., “Zur Abschätzung von $\zeta (1+ti)$”, Math. Z., 10 (1921), 88–101 | DOI | Zbl