On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 26-38

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates are proved for the constants $J(k,\alpha )$ in the classical Jackson–Stechkin inequality $E_{n-1}(f) \le J(k, \alpha ) \omega _k (f,{\alpha \pi }/{n})$, $\alpha >0$, in the case of approximation of functions $f \in C[-1,1]$ by algebraic polynomials. The main result of the paper implies the following two-sided estimates for the constants: $1/2\le J(2k,\alpha )10$, $n \ge 2k(2k-1)$, $\alpha \ge 2$.
@article{TM_2018_303_a2,
     author = {A. G. Babenko and Yu. V. Kryakin},
     title = {On constants in the {Jackson--Stechkin} theorem in the case of approximation by algebraic polynomials},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {26--38},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a2/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - Yu. V. Kryakin
TI  - On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 26
EP  - 38
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a2/
LA  - ru
ID  - TM_2018_303_a2
ER  - 
%0 Journal Article
%A A. G. Babenko
%A Yu. V. Kryakin
%T On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 26-38
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a2/
%G ru
%F TM_2018_303_a2
A. G. Babenko; Yu. V. Kryakin. On constants in the Jackson--Stechkin theorem in the case of approximation by algebraic polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 26-38. http://geodesic.mathdoc.fr/item/TM_2018_303_a2/