Extremal properties of product sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 239-245
Voir la notice de l'article provenant de la source Math-Net.Ru
We find the nearly optimal size of a set $A\subset [N] := \{1,\dots ,N\}$ so that the product set $AA$ satisfies either (i) $|AA| \sim |A|^2/2$ or (ii) $|AA| \sim |[N][N]|$. This settles problems recently posed in a paper of J. Cilleruelo, D. S. Ramana and O. Ramaré.
@article{TM_2018_303_a16,
author = {K. Ford},
title = {Extremal properties of product sets},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {239--245},
publisher = {mathdoc},
volume = {303},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a16/}
}
K. Ford. Extremal properties of product sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 239-245. http://geodesic.mathdoc.fr/item/TM_2018_303_a16/