Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_303_a16, author = {K. Ford}, title = {Extremal properties of product sets}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {239--245}, publisher = {mathdoc}, volume = {303}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a16/} }
K. Ford. Extremal properties of product sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 239-245. http://geodesic.mathdoc.fr/item/TM_2018_303_a16/
[1] Candela P., Rué J., Serra O., “Memorial to Javier Cilleruelo: A problem list”, Integers, 18 (2018), A28 | MR
[2] J. Cilleruelo, D. S. Ramana, O. Ramaré, “Quotient and product sets of thin subsets of the positive integers”, Proc. Steklov Inst. Math., 296 (2017), 52–64 | DOI | MR | MR | Zbl
[3] Ford K., “Generalized Smirnov statistics and the distribution of prime factors”, Funct. approx. Comment. math., 37:1 (2007), 119–129 | DOI | MR | Zbl
[4] Ford K., “The distribution of integers with a divisor in a given interval”, Ann. Math. Ser. 2, 168:2 (2008), 367–433 | DOI | MR | Zbl
[5] Ford K., “Integers with a divisor in $(y,2y]$”, Anatomy of integers, CRM Proc. Lect. Notes, 46, Amer. Math. Soc., Providence, RI, 2008, 65–80 | DOI | MR | Zbl
[6] Hall R. R., Tenenbaum G., Divisors, Cambridge Tracts Math., 90, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl