An inverse theorem for an inequality of Kneser
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 209-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G = (G,+)$ be a compact connected abelian group, and let $\mu _G$ denote its probability Haar measure. A theorem of Kneser (generalising previous results of Macbeath, Raikov, and Shields) establishes the bound $\mu _G(A + B) \geq \min (\mu _G(A)+\mu _G(B),1)$ whenever $A$ and $B$ are compact subsets of $G$, and $A+B := \{a+b: a \in A,\, b \in B\}$ denotes the sumset of $A$ and $B$. Clearly one has equality when $\mu _G(A)+\mu _G(B) \geq 1$. Another way in which equality can be obtained is when $A = \phi ^{-1}(I)$ and $B = \phi ^{-1}(J)$ for some continuous surjective homomorphism $\phi : G \to \mathbb{R} /\mathbb{Z} $ and compact arcs $I,J \subset \mathbb{R} /\mathbb{Z} $. We establish an inverse theorem that asserts, roughly speaking, that when equality in the above bound is almost attained, then $A$ and $B$ are close to one of the above examples. We also give a more “robust” form of this theorem in which the sumset $A+B$ is replaced by the partial sumset $A +_{\varepsilon} B := \{1_A * 1_B \geq \varepsilon \}$ for some small $\varepsilon >0$. In a subsequent paper with Joni Teräväinen, we will apply this latter inverse theorem to establish that certain patterns in multiplicative functions occur with positive density.
@article{TM_2018_303_a15,
     author = {T. Tao},
     title = {An inverse theorem for an inequality of {Kneser}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {209--238},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a15/}
}
TY  - JOUR
AU  - T. Tao
TI  - An inverse theorem for an inequality of Kneser
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 209
EP  - 238
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a15/
LA  - ru
ID  - TM_2018_303_a15
ER  - 
%0 Journal Article
%A T. Tao
%T An inverse theorem for an inequality of Kneser
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 209-238
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a15/
%G ru
%F TM_2018_303_a15
T. Tao. An inverse theorem for an inequality of Kneser. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 209-238. http://geodesic.mathdoc.fr/item/TM_2018_303_a15/

[1] Bilu Y., “The $(\alpha +2\beta )$-inequality on a torus”, J. London Math. Soc. Ser. 2, 57:3 (1998), 513–528 | DOI | MR | Zbl

[2] Bilu Y. F., Lev V. F., Ruzsa I. Z., “Rectification principles in additive number theory”, Discrete Comput. Geom., 19:3 (1998), 343–353 | DOI | MR | Zbl

[3] Björklund M., “Small product sets in compact groups”, Fundam. math., 238 (2017), 1–27 | DOI | MR | Zbl

[4] Björklund M., Fish A., “Product set phenomena for countable groups”, Adv. Math., 275 (2015), 47–113 | DOI | MR | Zbl

[5] Björklund M., Fish A., Ergodic Kneser-type theorems for amenable groups, E-print, 2016, arXiv: 1607.02575v2 [math.DS]

[6] Candela P., de Roton A., On sets with small sumset in the circle, E-print, 2017, arXiv: 1709.04501 [math.CO]

[7] Christ M., An approximate inverse Riesz–Sobolev inequality, E-print, 2011, arXiv: 1112.3715 [math.CA]

[8] Christ M., Near equality in the Riesz–Sobolev inequality, E-print, 2013, arXiv: 1309.5856 [math.CA] | MR

[9] DeVos M., The structure of critical product sets, E-print, 2013, arXiv: 1301.0096 [math.CO]

[10] Figalli A., Jerison D., “Quantitative stability for the Brunn–Minkowski inequality”, Adv. Math., 314 (2017), 1–47 | DOI | MR | Zbl

[11] G. A. Freiman, “On addition of finite sets. I”, Izv. Vyssh. Uchebn. Zaved., Mat., 1959, no. 6, 202–213 | Zbl

[12] Green B., Ruzsa I. Z., “Sets with small sumset and rectification”, Bull. London Math. Soc., 38:1 (2006), 43–52 | DOI | MR | Zbl

[13] Green B., Ruzsa I. Z., “Freiman's theorem in an arbitrary abelian group”, J. London Math. Soc. Ser. 2, 75:1 (2007), 163–175 | DOI | MR | Zbl

[14] Griesmer J. T., “An inverse theorem: when the measure of the sumset is the sum of the measures in a locally compact abelian group”, Trans. Amer. Math. Soc., 366:4 (2014), 1797–1827 | DOI | MR | Zbl

[15] Grynkiewicz D. J., “Quasi-periodic decompositions and the Kemperman structure theorem”, Eur. J. Comb., 26:5 (2005), 559–575 | DOI | MR | Zbl

[16] Grynkiewicz D. J., “A step beyond Kemperman's structure theorem”, Mathematika, 55:1–2 (2009), 67–114 | DOI | MR | Zbl

[17] Grynkiewicz D. J., Structural additive theory, Dev. Math., 30, Springer, Cham, 2013 | MR | Zbl

[18] Hamidoune Y. O., Serra O., Zémor G., “On the critical pair theory in $\mathbb Z/p\mathbb Z$”, Acta arith., 121:2 (2006), 99–115 | DOI | MR | Zbl

[19] Kemperman J. H. B., “On small sumsets in an abelian group”, Acta math., 103 (1960), 63–88 | DOI | MR | Zbl

[20] Kemperman J. H. B., “On products of sets in a locally compact group”, Fundam. math., 56 (1964), 51–68 | DOI | MR | Zbl

[21] Kneser M., “Summenmengen in lokalkompakten abelschen Gruppen”, Math. Z., 66 (1956), 88–110 | DOI | MR | Zbl

[22] Macbeath A. M., “On measure of sum sets. II: The sum-theorem for the torus”, Proc. Cambridge Philos. Soc., 49 (1953), 40–43 | DOI | MR | Zbl

[23] D. A. Moskvin, G. A. Freiman, A. A. Yudin, “Inverse problems of additive number theory and local limit theorems for lattice random variables”, Number-Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition, Kalinin. Gos. Univ., M., 1973, 148–162 (in Russian)

[24] Pollard J. M., “A generalisation of the theorem of Cauchy and Davenport”, J. London Math. Soc. Ser. 2, 8 (1974), 460–462 | DOI | MR | Zbl

[25] D. Raikov, “On the addition of point-sets in the sense of Schnirelmann”, Mat. Sb., 5:2 (1939), 425–440

[26] Rødseth Ø. J., “On Freiman's $2.4$-theorem”, Skr. K. Nor. Vidensk. Selsk., 2006:4 (2006), 11–18 | MR

[27] Ruzsa I., “A concavity property for the measure of product sets in groups”, Fundam. math., 140:3 (1992), 247–254 | DOI | MR | Zbl

[28] Schoen T., “Multiple set addition in $\mathbb Z_p$”, Integers, 3 (2003), A17 | MR | Zbl

[29] Serra O., Zémor G., “Large sets with small doubling modulo $p$ are well covered by an arithmetic progression”, Ann. Inst. Fourier, 59:5 (2009), 2043–2060 | DOI | MR | Zbl

[30] Shao X., Xu W., A robust version of Freiman's $3k-4$ theorem and applications, E-print, 2017, arXiv: 1711.11060 [math.NT]

[31] Shields A., “Sur la mesure d'une somme vectorielle”, Fundam. math., 42 (1955), 57–60 | DOI | MR | Zbl

[32] Tao T., A variant of Kemperman's theorem, , 2011 https://terrytao.wordpress.com/2011/12/26

[33] Tao T., A cheap version of nonstandard analysis, , 2012 https://terrytao.wordpress.com/2012/04/02

[34] Tao T., Teräväinen J., The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures, E-print, 2017, arXiv: 1708.02610 [math.NT] | MR