An inverse theorem for an inequality of Kneser
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 209-238

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G = (G,+)$ be a compact connected abelian group, and let $\mu _G$ denote its probability Haar measure. A theorem of Kneser (generalising previous results of Macbeath, Raikov, and Shields) establishes the bound $\mu _G(A + B) \geq \min (\mu _G(A)+\mu _G(B),1)$ whenever $A$ and $B$ are compact subsets of $G$, and $A+B := \{a+b: a \in A,\, b \in B\}$ denotes the sumset of $A$ and $B$. Clearly one has equality when $\mu _G(A)+\mu _G(B) \geq 1$. Another way in which equality can be obtained is when $A = \phi ^{-1}(I)$ and $B = \phi ^{-1}(J)$ for some continuous surjective homomorphism $\phi : G \to \mathbb{R} /\mathbb{Z} $ and compact arcs $I,J \subset \mathbb{R} /\mathbb{Z} $. We establish an inverse theorem that asserts, roughly speaking, that when equality in the above bound is almost attained, then $A$ and $B$ are close to one of the above examples. We also give a more “robust” form of this theorem in which the sumset $A+B$ is replaced by the partial sumset $A +_{\varepsilon} B := \{1_A * 1_B \geq \varepsilon \}$ for some small $\varepsilon >0$. In a subsequent paper with Joni Teräväinen, we will apply this latter inverse theorem to establish that certain patterns in multiplicative functions occur with positive density.
@article{TM_2018_303_a15,
     author = {T. Tao},
     title = {An inverse theorem for an inequality of {Kneser}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {209--238},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a15/}
}
TY  - JOUR
AU  - T. Tao
TI  - An inverse theorem for an inequality of Kneser
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 209
EP  - 238
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a15/
LA  - ru
ID  - TM_2018_303_a15
ER  - 
%0 Journal Article
%A T. Tao
%T An inverse theorem for an inequality of Kneser
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 209-238
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a15/
%G ru
%F TM_2018_303_a15
T. Tao. An inverse theorem for an inequality of Kneser. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 209-238. http://geodesic.mathdoc.fr/item/TM_2018_303_a15/