Divisors of a quadratic form with primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 169-185

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the average number of divisors of the quadratic form $\mathcal A(x,y,z) = xy+xz+yz$, where $x$, $y$, and $z$ run through prime numbers from the interval $X$.
@article{TM_2018_303_a12,
     author = {M. A. Korolev},
     title = {Divisors of a quadratic form with primes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {169--185},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a12/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Divisors of a quadratic form with primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 169
EP  - 185
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a12/
LA  - ru
ID  - TM_2018_303_a12
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Divisors of a quadratic form with primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 169-185
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a12/
%G ru
%F TM_2018_303_a12
M. A. Korolev. Divisors of a quadratic form with primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 169-185. http://geodesic.mathdoc.fr/item/TM_2018_303_a12/