Divisors of a quadratic form with primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 169-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an asymptotic formula for the average number of divisors of the quadratic form $\mathcal A(x,y,z) = xy+xz+yz$, where $x$, $y$, and $z$ run through prime numbers from the interval $X$.
@article{TM_2018_303_a12,
     author = {M. A. Korolev},
     title = {Divisors of a quadratic form with primes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {169--185},
     publisher = {mathdoc},
     volume = {303},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a12/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Divisors of a quadratic form with primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 169
EP  - 185
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_303_a12/
LA  - ru
ID  - TM_2018_303_a12
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Divisors of a quadratic form with primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 169-185
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_303_a12/
%G ru
%F TM_2018_303_a12
M. A. Korolev. Divisors of a quadratic form with primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 169-185. http://geodesic.mathdoc.fr/item/TM_2018_303_a12/

[1] Baker R. C., “Kloosterman sums with prime variable”, Acta arith., 156:4 (2012), 351–372 | DOI | MR | Zbl

[2] Bourgain J., “More on the sum–product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl

[3] J. Bourgain, M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. Math., 78:4 (2014), 656–707 | DOI | DOI | MR | Zbl

[4] Davenport H., “On certain exponential sums”, J. reine angew. Math., 169 (1933), 158–176 | MR

[5] Fouvry É., Michel P., “Sur certaines sommes d'exponentielles sur les nombres premiers”, Ann. sci. Éc. norm. supér., 31:1 (1998), 93–130 | DOI | MR | Zbl

[6] Fouvry É., Shparlinski I. E., “On a ternary quadratic form over primes”, Acta arith., 150:3 (2011), 285–314 | DOI | MR | Zbl

[7] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3 (2010), 330–337 | DOI | DOI | MR | MR | Zbl

[8] Hardy G. H., Wright E. M., An introduction to the theory of numbers, Clarendon Press, Oxford, 1979 | MR | Zbl

[9] Irving A. J., “Average bounds for Kloosterman sums over primes”, Funct. Approximatio. Comment. Math., 51:2 (2014), 221–235 | DOI | MR | Zbl

[10] Iwaniec H., Lectures on the Riemann zeta function, Univ. Lect. Ser., 62, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl

[11] Karatsuba A. A., Basic analytic number theory, Springer, Berlin, 1993 | MR | Zbl

[12] A. A. Karatsuba, “The distribution of inverses in a residue ring modulo a given modulus”, Russ. Acad. Sci., Dokl. Math., 48:3 (1994), 452–454 | MR | MR | Zbl

[13] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59:4 (1995), 721–740 | DOI | MR | Zbl

[14] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl

[15] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Dokl. Math., 54:1 (1996), 541 | MR | Zbl

[16] A. A. Karatsuba, “Analogs of incomplete Kloosterman sums and their applications”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[17] A. A. Karatsuba, “Kloosterman double sums”, Math. Notes, 66:5 (1999), 565–569 | DOI | DOI | MR | Zbl

[18] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta math., 49 (1926), 407–464 | DOI | MR

[19] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[20] M. A. Korolev, “Short Kloosterman sums with weights”, Math. Notes, 88:3 (2010), 374–385 | DOI | DOI | MR | MR | Zbl

[21] M. A. Korolev, “Karatsuba's method for estimating Kloosterman sums”, Sb. Math., 207:8 (2016), 1142–1158 | DOI | DOI | MR | Zbl

[22] M. A. Korolev, “On short Kloosterman sums modulo a prime”, Math. Notes, 100:6 (2016), 820–827 | DOI | DOI | MR | Zbl

[23] M. A. Korolev, “Short Kloosterman sums to powerful modulus”, Dokl. Math., 94:2 (2016), 561–562 | DOI | MR | Zbl

[24] M. A. Korolev, “Methods of estimating of incomplete Kloosterman sums”, Chebyshev. Sb., 17:4 (2016), 79–109 | DOI | MR | Zbl

[25] M. A. Korolev, “Generalized Kloosterman sum with primes”, Proc. Steklov Inst. Math., 296 (2017), 154–171 | DOI | MR | Zbl

[26] M. A. Korolev, “New estimate for a Kloosterman sum with primes for a composite modulus”, Sb. Math., 209:5 (2018), 652–659 | DOI | DOI | MR | Zbl

[27] A. G. Postnikov, “On the sum of characters with respect to a modulus equal to a power of a prime number”, Izv. Akad. Nauk SSSR, Ser. Mat., 19:1 (1955), 11–16 | Zbl

[28] Postnikov A. G., “On Dirichlet $L$-series with the character modulus equal to the power of a prime number”, J. Indian Math. Soc. New Ser., 20 (1956), 217–226 | MR | Zbl

[29] Salié H., “Über die Kloostermanschen Summen $S(u,v;q)$”, Math. Z., 34 (1931), 91–109 | DOI | MR

[30] S. A. Stepanov, I. E. Shparlinski, “Estimate of trigonometric sums with rational and algebraic functions”, Automorphic Functions and Number Theory, v. 1, Dal'nevost. Otd. Akad. Nauk SSSR, Vladivostok, 1989, 5–18 (in Russian)

[31] I. M. Vinogradov, “On a certain trigonometrical expression and its applications in the theory of numbers”, Dokl. Akad. Nauk SSSR, 1933, no. 5, 195–204 | Zbl

[32] Weil A., “On some exponential sums”, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl