Kolmogorov width and approximate rank
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 155-168
Voir la notice de l'article provenant de la source Math-Net.Ru
Closely related notions of the Kolmogorov width and the approximate rank of a matrix are considered. New estimates are established in approximation problems related to the width of the set of characteristic functions of intervals; the multidimensional case (characteristic functions of parallelepipeds) is also considered.
@article{TM_2018_303_a11,
author = {B. S. Kashin and Yu. V. Malykhin and K. S. Ryutin},
title = {Kolmogorov width and approximate rank},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {155--168},
publisher = {mathdoc},
volume = {303},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2018_303_a11/}
}
TY - JOUR AU - B. S. Kashin AU - Yu. V. Malykhin AU - K. S. Ryutin TI - Kolmogorov width and approximate rank JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2018 SP - 155 EP - 168 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2018_303_a11/ LA - ru ID - TM_2018_303_a11 ER -
B. S. Kashin; Yu. V. Malykhin; K. S. Ryutin. Kolmogorov width and approximate rank. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Harmonic analysis, approximation theory, and number theory, Tome 303 (2018), pp. 155-168. http://geodesic.mathdoc.fr/item/TM_2018_303_a11/