Microformal geometry and homotopy algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 98-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

We extend the category of (super)manifolds and their smooth mappings by introducing a notion of microformal, or “thick,” morphisms. They are formal canonical relations of a special form, constructed with the help of formal power expansions in cotangent directions. The result is a formal category so that its composition law is also specified by a formal power series. A microformal morphism acts on functions by an operation of pullback, which is in general a nonlinear transformation. More precisely, it is a formal mapping of formal manifolds of even functions (bosonic fields), which has the property that its derivative for every function is a ring homomorphism. This suggests an abstract notion of a “nonlinear algebra homomorphism” and the corresponding extension of the classical “algebraic–functional” duality. There is a parallel fermionic version. The obtained formalism provides a general construction of $L_\infty $-morphisms for functions on homotopy Poisson ($P_\infty $) or homotopy Schouten ($S_\infty $) manifolds as pullbacks by Poisson microformal morphisms. We also show that the notion of the adjoint can be generalized to nonlinear operators as a microformal morphism. By applying this to $L_\infty $-algebroids, we show that an $L_\infty $-morphism of $L_\infty $-algebroids induces an $L_\infty $-morphism of the “homotopy Lie–Poisson” brackets for functions on the dual vector bundles. We apply this construction to higher Koszul brackets on differential forms and to triangular $L_\infty $-bialgebroids. We also develop a quantum version (for the bosonic case), whose relation to the classical version is like that of the Schrödinger equation to the Hamilton–Jacobi equation. We show that the nonlinear pullbacks by microformal morphisms are the limits as $\hbar \to 0$ of certain “quantum pullbacks,” which are defined as special form Fourier integral operators.
@article{TM_2018_302_a4,
     author = {Th. Th. Voronov},
     title = {Microformal geometry and homotopy algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {98--142},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a4/}
}
TY  - JOUR
AU  - Th. Th. Voronov
TI  - Microformal geometry and homotopy algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 98
EP  - 142
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a4/
LA  - ru
ID  - TM_2018_302_a4
ER  - 
%0 Journal Article
%A Th. Th. Voronov
%T Microformal geometry and homotopy algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 98-142
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a4/
%G ru
%F TM_2018_302_a4
Th. Th. Voronov. Microformal geometry and homotopy algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 98-142. http://geodesic.mathdoc.fr/item/TM_2018_302_a4/

[1] Akman F., “On some generalizations of Batalin–Vilkovisky algebras”, J. Pure Appl. Algebra, 120:2 (1997), 105–141 | DOI | MR

[2] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Grad. Texts Math., 60, 2nd ed., Springer, New York, 1989 | DOI | MR

[3] Bering K., Damgaard P. H., Alfaro J., “Algebra of higher antibrackets”, Nucl. Phys. B, 478:1–2 (1996), 459–503 | DOI | MR

[4] Cattaneo A. S., Dherin B., Weinstein A., “Symplectic microgeometry. I: Micromorphisms”, J. Symplectic Geom., 8:2 (2010), 205–223 | DOI | MR

[5] Cattaneo A. S., Dherin B., Weinstein A., “Symplectic microgeometry. II: Generating functions”, Bull. Braz. Math. Soc. (N.S.)., 42:4 (2011), 507–536 | DOI | MR

[6] Cattaneo A. S., Dherin B., Weinstein A., “Symplectic microgeometry. III: Monoids”, J. Symplectic Geom., 11:3 (2013), 319–341 | DOI | MR

[7] Cattaneo A. S., Dherin B., Weinstein A., “Integration of Lie algebroid comorphisms”, Port. Math., 70:2 (2013), 113–144 | DOI | MR

[8] Yu. V. Egorov, “The canonical transformations of pseudodifferential operators”, Usp. Mat. Nauk, 24:5 (1969), 235–236 | MR

[9] Yu. V. Egorov, “Canonical transformations and pseudodifferential operators”, Tr. Mosk. Mat. Obshch., 24, 1971, 3–28

[10] Yu. V. Egorov, “Microlocal analysis”, Partial Differential Equations. IV, Encycl. Math. Sci., 33, Springer, Berlin, 1993, 1–147

[11] M. V. Fedoryuk, “The stationary phase method and pseudodifferential operators”, Russ. Math. Surv., 26:1 (1971), 65–115 | DOI | MR | MR

[12] Fok V. A., “O kanonicheskom preobrazovanii v klassicheskoi i kvantovoi mekhanike”, Vestn. Leningr. un-ta. Ser. fiziki i khimii, 1959, no. 16, 67–70; Дирак П. А. М., Приложение, Принципы квантовой механики, 2-е изд., Наука, М., 1979, 404–407 ; V. Fock, “On the canonical transformation in classical and quantum mechanics”, Acta Phys. Acad. Sci. Hung., 27 (1969), 219–224 | MR | DOI | MR

[13] V. A. Fock, Fundamentals of Quantum Mechanics, Nauka, M., 1976; Mir, M., 1978

[14] Grothendieck A., “Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie)”, Publ. math. Inst. Hautes Étud. Sci., 32 (1967), 5–361 | DOI | MR

[15] Guillemin V., Sternberg S., Geometric asymptotics, Math. Surv., 14, Amer. Math. Soc., Providence, RI, 1977 | DOI | MR

[16] Higgins Ph.J., Mackenzie K. C.H., “Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures”, Math. Proc. Cambridge Philos. Soc., 114:3 (1993), 471–488 | DOI | MR

[17] Hörmander L., “The spectral function of an elliptic operator”, Acta math., 121 (1968), 193–218 | DOI | MR

[18] Hörmander L., “Fourier integral operators. I”, Acta math., 127 (1971), 79–183 | DOI | MR

[19] Khudaverdian H. M., Voronov Th., “On odd Laplace operators”, Lett. Math. Phys., 62:2 (2002), 127–142 | DOI | MR

[20] Khudaverdian H. M., Voronov Th., “On odd Laplace operators. II”, Geometry, topology, and mathematical physics: S.P. Novikov's seminar, 2002–2003, AMS Transl. Ser. 2, 212, eds. V.M. Buchstaber, I.M. Krichever, Amer. Math. Soc., Providence, RI, 2004, 179–205 | MR

[21] Khudaverdian H. M., Voronov Th. Th., “Higher Poisson brackets and differential forms”, Geometric methods in physics, Proc. XXVII Workshop (Białowieża, Poland, 2008), AIP Conf. Proc., 1079, Amer. Inst. Phys., Melville, NY, 2008, 203–215 | DOI | MR

[22] Khudaverdian H., Voronov Th., Thick morphisms, higher Koszul brackets, and $L_\infty $-algebroids, 2018, arXiv: 1808.10049 [math.DG]

[23] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66:3 (2003), 157–216, arXiv: q-alg/9709040 | DOI | MR

[24] Koszul J.-L., “Crochet de Schouten–Nijenhuis et cohomologie”, Élie Cartan et les mathématiques d'aujourd'hui, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque, Soc. math. France, Paris, 1985, 257–271 | MR

[25] Lada T., Stasheff J., “Introduction to sh Lie algebras for physicists”, Int. J. Theor. Phys., 32:7 (1993), 1087–1103 | DOI | MR

[26] Mackenzie K. C. H., “On certain canonical diffeomorphisms in symplectic and Poisson geometry”, Quantization, Poisson brackets and beyond, LMS Reg. Meet. Workshop (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 187–198 | DOI | MR

[27] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, LMS Lect. Note Ser., 213, Cambridge Univ. Press, Cambridge, 2005 | MR

[28] Mackenzie K. C. H., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73:2 (1994), 415–452 | DOI | MR

[29] V. P. Maslov, Perturbation Theory and Asymptotic Methods, Izd. Mosk. Gos. Univ., M., 1965 (in Russian)

[30] I. R. Shafarevich, Algebra. I: Basic Notions of Algebra, Encycl. Math. Sci., 11, Springer, Berlin, 1990 | MR

[31] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer, Berlin, 2001 | MR

[32] Trèves F., Introduction to pseudodifferential and Fourier integral operators, v. 2, Plenum Press, New York, 1980 | MR

[33] Tulczyjew W. M., “A symplectic formulation of particle dynamics”, Differential geometrical methods in mathematical physics, Proc. Symp. (Bonn, 1975), Lect. Notes Math., 570, Springer, Berlin, 1977, 457–463 | DOI | MR

[34] M. I. Vishik, G. I. Eskin, “Equations in convolutions in a bounded region”, Russ. Math. Surv., 20:3 (1965), 85–151 | DOI | MR

[35] Th. Th. Voronov, “Class of integral transforms induced by morphisms of vector bundles”, Math. Notes, 44:6 (1988), 886–896 | DOI | MR

[36] Voronov Th., “Graded manifolds and Drinfeld doubles for Lie bialgebroids”, Quantization, Poisson brackets and beyond, LMS Reg. Meet. Workshop (Manchester, 2001), Contemp. Math., 315, Am. Math. Soc., Providence, RI, 2002, 131–168 | DOI | MR

[37] Voronov Th., “Higher derived brackets and homotopy algebras”, J. Pure Appl. Algebra, 202:1–3 (2005), 133–153 | DOI | MR

[38] Voronov Th. Th., “$Q$-manifolds and higher analogs of Lie algebroids”, XXIX Workshop on Geometric Methods in Physics (Białowieża, Poland, 2010), AIP Conf. Proc., 1307, Am. Inst. Phys., Melville, NY, 2010, 191–202 | DOI | MR

[39] Voronov Th. Th., “On a non-Abelian Poincaré lemma”, Proc. Amer. Math. Soc., 140:8 (2012), 2855–2872 | DOI | MR

[40] Voronov Th. Th., “$Q$-manifolds and Mackenzie theory”, Commun. Math. Phys., 315:2 (2012), 279–310 | DOI | MR

[41] Voronov Th., Quantum microformal morphisms of supermanifolds: an explicit formula and further properties, 2015, arXiv: 1512.04163 [math-ph]

[42] Th. Th. Voronov, “Thick morphisms of supermanifolds and oscillatory integral operators”, Russ. Math. Surv., 71:4 (2016), 784–786 | DOI | DOI | MR

[43] Th. Th. Voronov, “On volumes of classical supermanifolds”, Sb. Math., 207:11 (2016), 1512–1536 | DOI | DOI | MR

[44] Voronov Th. Th., ““Nonlinear pullbacks” of functions and $L_\infty $-morphisms for homotopy Poisson structures”, J. Geom. Phys., 111 (2017), 94–110 | DOI | MR

[45] Weinstein A., “Symplectic structures on Banach manifolds”, Bull. Amer. Math. Soc., 75 (1969), 1040–1041 | DOI | MR

[46] Weinstein A., “Symplectic manifolds and their Lagrangian submanifolds”, Adv. Math., 6 (1971), 329–346 | DOI | MR

[47] Weinstein A., “Symplectic geometry”, Bull. Amer. Math. Soc. (N.S.), 5:1 (1981), 1–13 | DOI | MR

[48] Weinstein A., “The symplectic “category””, Differential geometric methods in mathematical physics, Proc. Int. Conf. (Clausthal, 1980), Lect. Notes Math., 905, Springer, Berlin, 1982, 45–51 | DOI | MR

[49] Weinstein A., “Coisotropic calculus and Poisson groupoids”, J. Math. Soc. Japan, 40:4 (1988), 705–727 | DOI | MR

[50] Weinstein A., “Symplectic categories”, Port. Math., 67:2 (2010), 261–278 | DOI | MR

[51] Weinstein A., “A note on the Wehrheim–Woodward category”, J. Geom. Mech., 3:4 (2011), 507–515 | DOI | MR