Cobordisms, manifolds with torus action, and functional equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 57-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to applications of functional equations to well-known problems of compact torus actions on oriented smooth manifolds. These include the problem of Hirzebruch genera of complex cobordism classes that are determined by complex, almost complex, and stably complex structures on a fixed manifold. We consider actions with connected stabilizer subgroups. For each such action with isolated fixed points, we introduce rigidity functional equations. This is based on the localization theorem for equivariant Hirzebruch genera. We consider actions of maximal tori on homogeneous spaces of compact Lie groups and torus actions on toric and quasitoric manifolds. The arising class of equations contains both classical and new functional equations that play an important role in modern mathematical physics.
@article{TM_2018_302_a3,
     author = {V. M. Buchstaber},
     title = {Cobordisms, manifolds with torus action, and functional equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {57--97},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a3/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Cobordisms, manifolds with torus action, and functional equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 57
EP  - 97
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a3/
LA  - ru
ID  - TM_2018_302_a3
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Cobordisms, manifolds with torus action, and functional equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 57-97
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a3/
%G ru
%F TM_2018_302_a3
V. M. Buchstaber. Cobordisms, manifolds with torus action, and functional equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 57-97. http://geodesic.mathdoc.fr/item/TM_2018_302_a3/

[1] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebr. Geom., 3:3 (1994), 493–535 | MR

[2] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80:2 (1958), 458–538 | DOI | MR

[3] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. II”, Amer. J. Math., 81:2 (1959), 315–382 | DOI | MR

[4] V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | MR

[5] V. M. Buchstaber, “Complex cobordism and formal groups”, Russ. Math. Surv., 67:5 (2012), 891–950 | DOI | DOI | MR

[6] V. M. Buchstaber, E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations”, Proc. Steklov Inst. Math., 290 (2015), 125–137 | DOI | MR

[7] Buchstaber V. M., Felder G., Veselov A. P., “Elliptic Dunkl operators, root systems, and functional equations”, Duke Math. J., 76:3 (1994), 885–911 | DOI | MR

[8] V. M. Bukhshtaber, I. M. Krichever, “Vector addition theorems and Baker–Akhiezer functions”, Theor. Math. Phys., 94:2 (1993), 142–149 | DOI | MR

[9] V. M. Buchstaber, E. Yu. Netay, “$\mathbb CP(2)$-multiplicative Hirzebruch genera and elliptic cohomology”, Russ. Math. Surv., 69:4 (2014), 757–759 | DOI | DOI | MR

[10] V. M. Buhštaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR, Sb., 13:1 (1971), 80–116 | DOI | MR

[11] V. M. Buchstaber, T. E. Panov, Torus Actions in Topology and Combinatorics, MTsNMO, M., 2004 (in Russian) | MR

[12] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[13] Buchstaber V., Panov T., Ray N., “Toric genera”, Int. Math. Res. Not., 2010:16 (2010), 3207–3262, arXiv: 0908.3298 [math.AT] | MR

[14] V. M. Bukhshtaber, N. Ray, “Toric manifolds and complex cobordisms”, Russ. Math. Surv., 53:2 (1998), 371–373 | DOI | DOI | MR | MR

[15] V. M. Buchstaber, N. Ray, “The universal equivariant genus and Krichever's formula”, Russ. Math. Surv., 62:1 (2007), 178–180 | DOI | DOI | MR

[16] Buchstaber V. M., Terzić S., “Equivariant complex structures on homogeneous spaces and their cobordism classes”, Geometry, topology, and mathematical physics, S. P. Novikov's seminar, 2006–2007, AMS Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 27–57, arXiv: 0801.3108 [math.AT] | MR

[17] Buchstaber V. M., Terzić S., “Toric genera of homogeneous spaces and their fibrations”, Int. Math. Res. Not., 2013:6 (2013), 1324–1403 | DOI | MR

[18] Buchstaber V. M., Terzić S., Toric topology of the complex Grassmann manifolds, 2018, arXiv: 1802.06449v2 [math.AT]

[19] V. M. Bukhshtaber, A. P. Veselov, “Dunkl operators, functional equations, and transformations of elliptic genera”, Russ. Math. Surv., 49:2 (1994), 145–147 | DOI | DOI | MR | MR

[20] Buchstaber V. M., Veselov A. P., “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR

[21] E. Yu. Bunkova, “Hirzebruch functional equation: Classification of solutions”, Proc. Steklov Inst. Math., 302 (2018), 33–47

[22] Conner P. E., Floyd E. E., Differentiable periodic maps, Ergeb. Math. Grenzgeb. Neue Flg., 33, Acad. Press, New York, 1964 ; Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969 | MR

[23] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR

[24] Duistermaat J. J., Heckman G. J., “On the variation in the cohomology of the symplectic form of the reduced phase space”, Invent. math., 69 (1982), 259–268 | DOI | MR

[25] Etingof P., Felder G., Ma X., Veselov A., “On elliptic Calogero–Moser systems for complex crystallographic reflection groups”, J. Algebra, 329 (2011), 107–129 | DOI | MR

[26] S. M. Gusein-Zade, “$U$-actions of a circle and fixed points”, Math. USSR, Izv., 5:5 (1971), 1127–1143 | DOI | MR

[27] S. M. Gusein-Zade, “On the action of a circle on manifolds”, Math. Notes, 10:5 (1971), 731–734 | DOI | MR

[28] Harish-Chandra, “Differential operators on a semisimple Lie algebra”, Amer. J. Math., 79:1 (1957), 87–120 | DOI | MR

[29] Hille L., Skarke H., “Reflexive polytopes in dimension 2 and certain relations in $\mathrm {SL}_2(\mathbb Z)$”, J. Algera Appl., 1:2 (2002), 159–173 | DOI | MR

[30] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Springer, Berlin, 1966 ; Khirtsebrukh F., Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR

[31] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Vieweg, Braunschweig, 1992 | DOI | MR

[32] Itzykson C., Zuber J.-B., “The planar approximation. II”, J. Math. Phys., 21:3 (1980), 411–421 | DOI | MR

[33] Kreuzer M., Skarke H., “Classification of reflexive polyhedra in three dimensions”, Adv. Theor. Math. Phys., 2:4 (1998), 853–871, arXiv: hep-th/9805190v1 | DOI | MR

[34] Kreuzer M., Skarke H., “Complete classification of reflexive polyhedra in four dimensions”, Adv. Theor. Math. Phys., 4:6 (2000), 1209–1230, arXiv: hep-th/0002240v1 | DOI | MR

[35] I. M. Kričever, “Formal groups and the Atiyah–Hirzebruch formula”, Math. USSR, Izv., 8:6 (1974), 1271–1285 | DOI | MR

[36] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR

[37] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR

[38] A. A. Kustarev, “Equivariant almost complex structures on quasi-toric manifolds”, Russ. Math. Surv., 64:1 (2009), 156–158 | DOI | DOI | MR

[39] A. A. Kustarev, “Equivariant almost complex structures on quasitoric manifolds”, Proc. Steklov Inst. Math., 266 (2009), 133–141 | DOI | MR

[40] I. Yu. Limonchenko, Z. Lü, T. E. Panov, “Calabi–Yau hypersurfaces and $\mathrm {SU}$-bordism”, Proc. Steklov Inst. Math., 302 (2018), 270–278

[41] Milnor J., “On the cobordism ring $\Omega _*$ and a complex analogue. I”, Amer. J. Math., 82:3 (1960), 505–521 | DOI | MR

[42] S. P. Novikov, “Some problems in the topology of manifolds connected with the theory of Thom spaces”, Sov. Math., Dokl., 1 (1960), 717–720 | MR

[43] S. P. Novikov, “Homotopy properties of Thom complexes”, Mat. Sb., 57:4 (1962), 407–442

[44] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR

[45] S. P. Novikov, “Adams operators and fixed points”, Math. USSR, Izv., 2:6 (1968), 1193–1211 | DOI | MR

[46] Novikov S. P., “Topologiya”, Topologiya–1, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 12, VINITI, M., 1986, 5–252 ; Novikov S. P., “Topology”, Topology I: General survey, Encycl. Math. Sci., 12, Springer, Berlin, 1996, 1–319 ; 2-е изд., Ин-т компьют. исслед., М.–Ижевск, 2002 | MR

[47] S. P. Novikov, “Topology in the 20th century: A view from the inside”, Russ. Math. Surv., 59:5 (2004), 803–829 | DOI | DOI | MR

[48] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR

[49] A. V. Pukhlikov, A. G. Khovanskii, “A Riemann–Roch theorem for integrals and sums of quasipolynomials over virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR

[50] R. E. Stong, Notes on Cobordism Theory, Math. Notes, Princeton Univ. Press, Princeton, NJ, 1968 ; Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | MR

[51] Thom R., “Quelques propriétés globales des variétés différentiables”, Comment. math. Helv., 28 (1954), 17–86 ; Tom R., “Nekotorye svoistva “v tselom” differentsiruemykh mnogoobrazii”, Rassloennye prostranstva i ikh prilozheniya, Izd-vo inostr. lit., M., 1958, 293–351 | DOI | MR