Hirzebruch functional equation: classification of solutions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 41-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hirzebruch functional equation is $\sum _{i=1}^n\prod _{j\ne i} (1/f(z_j-z_i))=c$ with constant $c$ and initial conditions $f(0)=0$ and $f'(0)=1$. In this paper we find all solutions of the Hirzebruch functional equation for $n\leq 6$ in the class of meromorphic functions and in the class of series. Previously, such results have been known only for $n\leq 4$. The Todd function is the function determining the two-parameter Todd genus (i.e., the $\chi _{a,b}$-genus). It gives a solution to the Hirzebruch functional equation for any $n$. The elliptic function of level $N$ is the function determining the elliptic genus of level $N$. It gives a solution to the Hirzebruch functional equation for $n$ divisible by $N$. A series corresponding to a meromorphic function $f$ with parameters in $U\subset \mathbb C^k$ is a series with parameters in the Zariski closure of $U$ in $\mathbb C^k$, such that for the parameters in $U$ it coincides with the series expansion at zero of $f$. The main results are as follows: (1) Any series solution of the Hirzebruch functional equation for $n=5$ corresponds either to the Todd function or to the elliptic function of level $5$. (2) Any series solution of the Hirzebruch functional equation for $n=6$ corresponds either to the Todd function or to the elliptic function of level $2$, $3$, or $6$. This gives a complete classification of complex genera that are fiber multiplicative with respect to $\mathbb C\mathrm P^{n-1}$ for $n\leq 6$. A topological application of this study is an effective calculation of the coefficients of elliptic genera of level $N$ for $N=2,\dots ,6$ in terms of solutions of a differential equation with parameters in an irreducible algebraic variety in $\mathbb C^4$.
Keywords: Hirzebruch functional equation, two-parameter Todd genus, elliptic genus of level $n$, elliptic function of level $n$, Baker–Akhiezer function, doubly periodic functions, elliptic curve.
Mots-clés : Hirzebruch genus, Krichever genus
@article{TM_2018_302_a2,
     author = {Elena Yu. Bunkova},
     title = {Hirzebruch functional equation: classification of solutions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--56},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a2/}
}
TY  - JOUR
AU  - Elena Yu. Bunkova
TI  - Hirzebruch functional equation: classification of solutions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 41
EP  - 56
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a2/
LA  - ru
ID  - TM_2018_302_a2
ER  - 
%0 Journal Article
%A Elena Yu. Bunkova
%T Hirzebruch functional equation: classification of solutions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 41-56
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a2/
%G ru
%F TM_2018_302_a2
Elena Yu. Bunkova. Hirzebruch functional equation: classification of solutions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 41-56. http://geodesic.mathdoc.fr/item/TM_2018_302_a2/

[1] Braden H. W., Buchstaber V. M., “The general analytic solution of a functional equation of addition type”, SIAM J. Math. Anal., 28:4 (1997), 903–923 | DOI | MR

[2] Braden H. W., Feldman K. E., “Functional equations and the generalised elliptic genus”, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 74–85 | DOI | MR

[3] V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | MR

[4] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87

[5] V. M. Buchstaber, E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations”, Proc. Steklov Inst. Math., 290 (2015), 125–137 | DOI | MR

[6] V. M. Buchstaber, E. Yu. Netay, “$\mathbb CP(2)$-multiplicative Hirzebruch genera and elliptic cohomology”, Russ. Math. Surv., 69:4 (2014), 757–759 | DOI | DOI | MR

[7] V. M. Buchstaber, I. V. Netay, “Hirzebruch functional equation and elliptic functions of level $d$”, Funct. Anal. Appl., 49:4 (2015), 239–252 | DOI | DOI | MR

[8] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[9] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR

[10] Buchstaber V. M., Veselov A. P., “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR

[11] E. Yu. Bunkova, “Elliptic function of level 4”, Proc. Steklov Inst. Math., 294 (2016), 201–214 | DOI | MR | MR

[12] E. Yu. Bunkova, V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera”, Proc. Steklov Inst. Math., 292 (2016), 37–62 | DOI | MR

[13] Hirzebruch F., Topological methods in algebraic geometry, 3rd ed., Springer, Berlin, 1966 | MR

[14] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Vieweg, Braunschweig, 1992 | DOI | MR

[15] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR

[16] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR

[17] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR

[18] Lang S., Elliptic functions, Springer, New York, 1987 | MR

[19] Musin O. R., “On rigid Hirzebruch genera”, Moscow Math. J., 11:1 (2011), 139–147 | MR

[20] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR

[21] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR

[22] Von Oehsen J. B., “Elliptic genera of level $N$ and Jacobi polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 303–312 ; Тр. МИАН, 294, 2016, 325–327 | MR

[23] O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188 | DOI | MR

[24] O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theor. Math. Phys., 185:3 (2015), 1816–1831 | DOI | DOI | MR

[25] Sheinman O. K., “Global current algebras and localization on Riemann surfaces”, Moscow Math. J., 15:4 (2015), 833–846 | MR

[26] O. K. Sheinman, “Lax operator algebras and integrable systems”, Russ. Math. Surv., 71:1 (2016), 109–156 | DOI | DOI | MR | MR

[27] Whittaker E. T., Watson G. N., A course of modern analysis, v. II, The transcendental functions, Cambridge Univ. Press, Cambridge, 1996 | MR

[28] Witten E., “Elliptic genera and quantum field theory”, Commun. Math. Phys., 109 (1987), 525–536 | DOI | MR