Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2018_302_a2, author = {Elena Yu. Bunkova}, title = {Hirzebruch functional equation: classification of solutions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {41--56}, publisher = {mathdoc}, volume = {302}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a2/} }
Elena Yu. Bunkova. Hirzebruch functional equation: classification of solutions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 41-56. http://geodesic.mathdoc.fr/item/TM_2018_302_a2/
[1] Braden H. W., Buchstaber V. M., “The general analytic solution of a functional equation of addition type”, SIAM J. Math. Anal., 28:4 (1997), 903–923 | DOI | MR
[2] Braden H. W., Feldman K. E., “Functional equations and the generalised elliptic genus”, J. Nonlinear Math. Phys., 12, Suppl. 1 (2005), 74–85 | DOI | MR
[3] V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups”, Russ. Math. Surv., 45:3 (1990), 213–215 | DOI | MR | MR
[4] V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations”, Proc. Steklov Inst. Math., 302 (2018), 48–87
[5] V. M. Buchstaber, E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations”, Proc. Steklov Inst. Math., 290 (2015), 125–137 | DOI | MR
[6] V. M. Buchstaber, E. Yu. Netay, “$\mathbb CP(2)$-multiplicative Hirzebruch genera and elliptic cohomology”, Russ. Math. Surv., 69:4 (2014), 757–759 | DOI | DOI | MR
[7] V. M. Buchstaber, I. V. Netay, “Hirzebruch functional equation and elliptic functions of level $d$”, Funct. Anal. Appl., 49:4 (2015), 239–252 | DOI | DOI | MR
[8] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR
[9] V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of formal group laws”, Sb. Math., 206:11 (2015), 1524–1563 | DOI | DOI | MR
[10] Buchstaber V. M., Veselov A. P., “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR
[11] E. Yu. Bunkova, “Elliptic function of level 4”, Proc. Steklov Inst. Math., 294 (2016), 201–214 | DOI | MR | MR
[12] E. Yu. Bunkova, V. M. Buchstaber, A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera”, Proc. Steklov Inst. Math., 292 (2016), 37–62 | DOI | MR
[13] Hirzebruch F., Topological methods in algebraic geometry, 3rd ed., Springer, Berlin, 1966 | MR
[14] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects Math., E20, Vieweg, Braunschweig, 1992 | DOI | MR
[15] I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14:4 (1980), 282–290 | DOI | MR
[16] I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions”, Math. Notes, 47:2 (1990), 132–142 | DOI | MR
[17] Krichever I., “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269 | DOI | MR
[18] Lang S., Elliptic functions, Springer, New York, 1987 | MR
[19] Musin O. R., “On rigid Hirzebruch genera”, Moscow Math. J., 11:1 (2011), 139–147 | MR
[20] S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory”, Math. USSR, Izv., 1:4 (1967), 827–913 | DOI | MR
[21] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26:2 (1987), 143–151 | DOI | MR
[22] Von Oehsen J. B., “Elliptic genera of level $N$ and Jacobi polynomials”, Proc. Amer. Math. Soc., 122:1 (1994), 303–312 ; Тр. МИАН, 294, 2016, 325–327 | MR
[23] O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188 | DOI | MR
[24] O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theor. Math. Phys., 185:3 (2015), 1816–1831 | DOI | DOI | MR
[25] Sheinman O. K., “Global current algebras and localization on Riemann surfaces”, Moscow Math. J., 15:4 (2015), 833–846 | MR
[26] O. K. Sheinman, “Lax operator algebras and integrable systems”, Russ. Math. Surv., 71:1 (2016), 109–156 | DOI | DOI | MR | MR
[27] Whittaker E. T., Watson G. N., A course of modern analysis, v. II, The transcendental functions, Cambridge Univ. Press, Cambridge, 1996 | MR
[28] Witten E., “Elliptic genera and quantum field theory”, Commun. Math. Phys., 109 (1987), 525–536 | DOI | MR