Quasitoric totally normally split manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 377-399

Voir la notice de l'article provenant de la source Math-Net.Ru

A smooth stably complex manifold is called a totally tangentially/normally split manifold (TTS/TNS manifold for short) if the respective complex tangential/normal vector bundle is stably isomorphic to a Whitney sum of complex line bundles, respectively. In this paper we construct manifolds $M$ such that any complex vector bundle over $M$ is stably equivalent to a Whitney sum of complex line bundles. A quasitoric manifold shares this property if and only if it is a TNS manifold. We establish a new criterion for a quasitoric manifold $M$ to be TNS via non-semidefiniteness of certain higher degree forms in the respective cohomology ring of $M$. In the family of quasitoric manifolds, this generalizes the theorem of J. Lannes about the signature of a simply connected stably complex TNS $4$-manifold. We apply our criterion to show the flag property of the moment polytope for a nonsingular toric projective TNS manifold of complex dimension $3$.
@article{TM_2018_302_a18,
     author = {Grigory D. Solomadin},
     title = {Quasitoric totally normally split manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {377--399},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a18/}
}
TY  - JOUR
AU  - Grigory D. Solomadin
TI  - Quasitoric totally normally split manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 377
EP  - 399
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a18/
LA  - ru
ID  - TM_2018_302_a18
ER  - 
%0 Journal Article
%A Grigory D. Solomadin
%T Quasitoric totally normally split manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 377-399
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a18/
%G ru
%F TM_2018_302_a18
Grigory D. Solomadin. Quasitoric totally normally split manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 377-399. http://geodesic.mathdoc.fr/item/TM_2018_302_a18/