Quasitoric totally normally split manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 377-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

A smooth stably complex manifold is called a totally tangentially/normally split manifold (TTS/TNS manifold for short) if the respective complex tangential/normal vector bundle is stably isomorphic to a Whitney sum of complex line bundles, respectively. In this paper we construct manifolds $M$ such that any complex vector bundle over $M$ is stably equivalent to a Whitney sum of complex line bundles. A quasitoric manifold shares this property if and only if it is a TNS manifold. We establish a new criterion for a quasitoric manifold $M$ to be TNS via non-semidefiniteness of certain higher degree forms in the respective cohomology ring of $M$. In the family of quasitoric manifolds, this generalizes the theorem of J. Lannes about the signature of a simply connected stably complex TNS $4$-manifold. We apply our criterion to show the flag property of the moment polytope for a nonsingular toric projective TNS manifold of complex dimension $3$.
@article{TM_2018_302_a18,
     author = {Grigory D. Solomadin},
     title = {Quasitoric totally normally split manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {377--399},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a18/}
}
TY  - JOUR
AU  - Grigory D. Solomadin
TI  - Quasitoric totally normally split manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 377
EP  - 399
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a18/
LA  - ru
ID  - TM_2018_302_a18
ER  - 
%0 Journal Article
%A Grigory D. Solomadin
%T Quasitoric totally normally split manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 377-399
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a18/
%G ru
%F TM_2018_302_a18
Grigory D. Solomadin. Quasitoric totally normally split manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 377-399. http://geodesic.mathdoc.fr/item/TM_2018_302_a18/

[1] Arthan R. D., Bullett S. R., “The homology of $\mathrm {MO}(1)^{\wedge \infty }$ and $\mathrm {MU}(1)^{\wedge \infty }$”, J. Pure Appl. Algebra., 26 (1982), 229–234 | DOI | MR

[2] M. F. Atiyah, K-Theory, W.A. Benjamin, New York, 1967 | MR

[3] Atiyah M. F., Hirzebruch F., “Vector bundles and homogeneous spaces”, Differential geometry, Proc. Symp. Pure Math., 3, Amer. Math. Soc., Providence, RI, 1961, 7–38 | DOI | MR

[4] Ayzenberg A., Masuda M., “Volume polynomials and duality algebras of multi-fans”, Arnold Math. J., 2:3 (2016), 329–381, arXiv: 1509.03008 [math.CO] | DOI | MR

[5] Bogart T., Contois M., Gubeladze J., “Hom-polytopes”, Math. Z., 273:3–4 (2013), 1267–1296 | DOI | MR

[6] V. M. Buchstaber, V. D. Volodin, “Sharp upper and lower bounds for nestohedra”, Izv. Math., 75:6 (2011), 1107–1133 | DOI | DOI | MR

[7] Buchstaber V. M., Volodin V. D., “Combinatorial 2-truncated cubes and applications”, Associahedra, Tamari lattices and related structures, Prog. Math., 299, Birkhäuser, Basel, 2012, 161–186 | MR

[8] Buchstaber V. M., Panov T. E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR

[9] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR

[10] Huh J., Rota's conjecture and positivity of algebraic cycles in permutohedral varieties, PhD Thesis, Univ. Michigan, Ann Arbor, MI, 2014 | MR

[11] Morelli R., “The $K$ theory of a toric variety”, Adv. Math., 100:2 (1993), 154–182 | DOI | MR

[12] Ochanine S., Schwartz L., “Une remarque sur les générateurs du cobordisme complexe”, Math. Z., 190 (1985), 543–557 | DOI | MR

[13] V. V. Prasolov, Polynomials, Algorithms Comput. Math., 11, Springer, Berlin, 2004 | DOI | MR

[14] A. V. Pukhlikov, A. G. Khovanskii, “Finitely additive measures of virtual polyhedra”, St. Petersburg Math. J., 4:2 (1993), 337–356 | MR

[15] A. V. Pukhlikov, A. G. Khovanskii, “A Riemann–Roch theorem for integrals and sums of quasipolynomials over virtual polytopes”, St. Petersburg Math. J., 4:4 (1993), 789–812 | MR

[16] Ray N., “On a construction in bordism theory”, Proc. Edinb. Math. Soc., 29:3 (1986), 413–422 | DOI | MR

[17] Sankaran P., Uma V., “$K$-theory of quasi-toric manifolds”, Osaka J. Math., 44:1 (2007), 71–89 | MR

[18] G. D. Solomadin, “Quasitoric totally normally split representatives in unitary cobordism ring”, Mat. Zametki, 2019, arXiv: 1704.07403 [math.AT] | DOI

[19] Tarski A., A decision method for elementary algebra and geometry, Rand Corp., Santa Monica, CA, 1948 | MR

[20] V. A. Timorin, “An analogue of the Hodge–Riemann relations for simple convex polytopes”, Russ. Math. Surv., 54:2 (1999), 381–426 | DOI | DOI | MR

[21] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | MR