Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 354-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a theory of periodic and quasiperiodic functional continued fractions in the field $k((h))$ for a linear polynomial $h$ and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and $S$-units for appropriate sets $S$. We prove the periodicity of quasiperiodic elements of the form $\sqrt f/dh^s$, where $s$ is an integer, the polynomial $f$ defines a hyperelliptic field, and the polynomial $d$ is a divisor of $f$; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element $\sqrt f$ is periodic. We also analyze the continued fraction expansion of the key element $\sqrt f/h^{g+1}$, which defines the set of quasiperiodic elements of a hyperelliptic field.
@article{TM_2018_302_a17,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {354--376},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a17/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 354
EP  - 376
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a17/
LA  - ru
ID  - TM_2018_302_a17
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 354-376
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a17/
%G ru
%F TM_2018_302_a17
V. P. Platonov; M. M. Petrunin. Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 354-376. http://geodesic.mathdoc.fr/item/TM_2018_302_a17/

[1] Abel N. H., “Ueber die Integration der Differential-Formel $\frac {\rho dx}{\sqrt R}$, wenn $R$ und $\rho $ ganze Functionen sind”, J. reine angew. Math., 1 (1826), 185–221 | DOI | MR

[2] Artin E., “Quadratische Körper im Gebiete der höheren Kongruenzen. I: Arithmetischer Teil”, Math. Z., 19 (1924), 153–206 | DOI | MR

[3] V. V. Benyash-Krivets and V. P. Platonov, “Groups of $S$-units in hyperelliptic fields and continued fractions”, Sb. Math., 200 (2009), 1587–1615 | DOI | DOI | MR

[4] M. M. Petrunin, “$S$-units and periodicity of square root in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 222–225 | DOI | MR

[5] V. P. Platonov, “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russ. Math. Surv., 69 (2014), 1–34 | DOI | DOI | MR

[6] V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR

[7] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258 | DOI | MR

[8] V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335 | DOI | MR

[9] V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209 (2018), 519–559 | DOI | DOI | MR

[10] V. P. Platonov, M. M. Petrunin, “Fundamental $S$-units in hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves”, Dokl. Math., 92:3 (2015), 667–669 | DOI | MR

[11] V. P. Platonov, M. M. Petrunin, “$S$-units in hyperelliptic fields and periodicity of continued fractions”, Dokl. Math., 94:2 (2016), 532–537 | DOI | MR

[12] V. P. Platonov, M. M. Petrunin, “$S$-units and periodicity in quadratic function fields”, Russ. Math. Surv., 71 (2016), 973–975 | DOI | DOI | MR

[13] V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued rational fractions in hyperelliptic fields and the Mumford representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR

[14] Schmidt W. M., “On continued fractions and Diophantine approximation in power series fields”, Acta arith., 95:2 (2000), 139–166 | DOI | MR

[15] Tchebichef P., “Sur l'intégration des différentielles qui contiennent une racine carrée d'un polynome du troisième ou du quatrième degré”, J. math. pures appl., 2 (1857), 1–42