Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 354-376

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a theory of periodic and quasiperiodic functional continued fractions in the field $k((h))$ for a linear polynomial $h$ and in hyperelliptic fields. In addition, we establish a relationship between continued fractions in hyperelliptic fields, torsion in the Jacobians of the corresponding hyperelliptic curves, and $S$-units for appropriate sets $S$. We prove the periodicity of quasiperiodic elements of the form $\sqrt f/dh^s$, where $s$ is an integer, the polynomial $f$ defines a hyperelliptic field, and the polynomial $d$ is a divisor of $f$; such elements are important from the viewpoint of the torsion and periodicity problems. In particular, we show that the quasiperiodic element $\sqrt f$ is periodic. We also analyze the continued fraction expansion of the key element $\sqrt f/h^{g+1}$, which defines the set of quasiperiodic elements of a hyperelliptic field.
@article{TM_2018_302_a17,
     author = {V. P. Platonov and M. M. Petrunin},
     title = {Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {354--376},
     publisher = {mathdoc},
     volume = {302},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2018_302_a17/}
}
TY  - JOUR
AU  - V. P. Platonov
AU  - M. M. Petrunin
TI  - Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2018
SP  - 354
EP  - 376
VL  - 302
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2018_302_a17/
LA  - ru
ID  - TM_2018_302_a17
ER  - 
%0 Journal Article
%A V. P. Platonov
%A M. M. Petrunin
%T Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2018
%P 354-376
%V 302
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2018_302_a17/
%G ru
%F TM_2018_302_a17
V. P. Platonov; M. M. Petrunin. Groups of $S$-units and the problem of periodicity of continued fractions in hyperelliptic fields. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and physics, Tome 302 (2018), pp. 354-376. http://geodesic.mathdoc.fr/item/TM_2018_302_a17/